Physics, asked by alittleseed23, 5 hours ago

please solve the above questions​

Attachments:

Answers

Answered by Anonymous
3

Explanation:

 \bold{Velocity \:  of car \:  A (V_A) = 36 \: km  {h}^{ - 1} }

 \scriptsize \bold{ =  \frac{36000}{60 \times 60} } \:  m/s \: ( \because \: 1km = 1000m \: and \: 1h  = 60 \times 60sec.)

 \bold{ =  \frac{ \cancel{36000}}{ \cancel{3600} }}

 \bold{ = 10 \:m/s }

 \bold{Velocity \: of \: car B (V_B) = 54 \: km \:  {h}^{ - 1} }

 \bold{ =  \frac{54000}{60 \times 60} } \: m/s

 \bold{ =  \frac{ \cancel{54000}}{ \cancel{3600}} }

 \bold{ = 15 \: m/s}

  \scriptsize\bold{Velocity \: of \: car \: C (V_C) = 54  \: km/h\: (Speed  \: of  \: car  \: B = speed \:  of  \: car  \: C)}

 \bold{ =  \frac{54000}{60 \times 60} } \: m/s

 \bold{ =  \frac{ \cancel{54000}}{ \cancel{3600}} }

 \bold{ = 15 \: m/s}

Relative velocity of car C with respect to car A,

V_{CA} = V_C -(-V_A)

 = 15 - ( - 10)

 = 15 + 10

 = 25 \: m/s

 \scriptsize \bold{Time(t) \:  taken \:  by  \: car  \: C  \: to \:  overtake \:  car \:  A =  \frac{1000}{25} }

 = 40 \: sec.

So, B have to cover distance of (1000m+400m)

i.e. 1400m to take over a A before C does. in 40 sec.

Now putting in formula :-

  \bold{s = ut +  \frac{1}{2} a {t}^{2} }

 \bold{1400 = 15 \times 40 +  \frac{1}{2} \times a \times  {40}^{2}  }

 \bold{1400 = 600 +  \frac{1}{ \cancel2} \times   \cancel{1600}a  }

 \bold{1400 - 600 = 800a}

 \bold{800 = 800a}

 \bold{a =  \frac{800}{800} }

 \bold{a = 1 \: m/s²}

See image for 2nd question

Attachments:
Answered by prince100001kidiwani
1

Answer:

Answer:

sinα - αcosα

Step-by-step explanation:

Given that,

\lim_{x\to\alpha}\;\;|\frac{x\sin\alpha-\alpha\sin x}{x-\alpha}|lim

x→α

x−α

xsinα−αsinx

Let x - α = h

Thus when x ⇒ α , h ⇒ 0

\lim_{h\to0}\;\;|\frac{(h+\alpha)\sin\alpha-\alpha\sin(h+\alpha)}{h}|lim

h→0

h

(h+α)sinα−αsin(h+α)

Now we will evaluate left hand limit and right and limit separately

For LHL:-

\begin{gathered}\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cos(-h)]}{-h}+\sin\alpha-\frac{\alpha\sin(-h)\cos\alpha}{-h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{-h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{-h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered} \end{gathered}

h→0

lim

−h

αsinα[1−cos(−h)]

+sinα−

−h

αsin(−h)cosα

=

h→0

lim

−h

αsinα(1−cosh)

+sinα−

h

αsinhcosα

=αsinα[

h→0

lim

−h

(1−cosh)

]+sinα−αcosα[

h→0

lim

h

sinh

]

=0+sinα−αcosα

=sinα−αcosα

For RHL:-

\begin{gathered}\begin{gathered}\lim_{h\to0}\;\;\frac{\alpha\sin\alpha[1-\cosh]}{h}+\sin\alpha-\frac{\alpha\sinh\cos\alpha}{h}\\\;\\=\lim_{h\to0}\;\;\frac{\alpha\sin\alpha(1-\cosh)}{h}+\sin\alpha-\frac{\alpha\sin h\cos\alpha}{h}\\\;\\=\alpha\sin\alpha[\lim_{h\to0}\frac{(1-\cosh)}{h}]+\sin\alpha-\alpha\cos \alpha[\lim_{h\to0}\frac{\sin h}{h}]\\\;\\=0+\sin\alpha-\alpha\cos\alpha\\\;\\=\sin\alpha-\alpha\cos\alpha\end{gathered} \end{gathered}

h→0

lim

h

αsinα[1−cosh]

+sinα−

h

αsinhcosα

=

h→0

lim

h

αsinα(1−cosh)

+sinα−

h

αsinhcosα

=αsinα[

h→0

lim

h

(1−cosh)

]+sinα−αcosα[

h→0

lim

h

sinh

]

=0+sinα−αcosα

=sinα−αcosα

Thus limit is (sinα - αcosα).

Similar questions