Math, asked by fariyamaryam, 1 year ago

please solve the above, the solution given in the book is very confusing. please do not copy paste since I really need to understand this.​

Attachments:

Answers

Answered by prav96
0

Answer:

this the answer for your question

Attachments:
Answered by ihrishi
0

Answer:

Given:  {sec}^{2}  \theta  = 1 + {tan}^{2}  \theta \\  \therefore \:  {sec}^{2}  \theta   -  {tan}^{2}  \theta = 1 \\ \therefore \:  ({sec} \theta    +   {tan}  \theta)({sec} \theta   -  {tan}  \theta) = 1  \\  \implies ({sec} \theta    +   {tan}  \theta) =  \frac{1}{({sec} \theta   -  {tan}  \theta) }  \\ \implies  \frac{({sec} \theta    +   {tan}  \theta) }{1} =  \frac{1}{({sec} \theta   -  {tan}  \theta) }   \\ let \:  \frac{({sec} \theta    +   {tan}  \theta) }{1} =  \frac{1}{({sec} \theta   -  {tan}  \theta) }   = k \: (constant) \\   \therefore \: k = \frac{({sec} \theta    +   {tan}  \theta) }{1} =  \frac{1}{({sec} \theta   -  {tan}  \theta) } .....(1) \\  \therefore \: k = \frac{1    +   {sin}  \theta}{{cos\theta}} =  \frac{cos\theta}{1  -  {sin}  \theta}  \\ multiplying \:  numerator \: and \:  \\ denominator \: by \:  (- 1) \:  to \: extreme \:  \\ right \: ratio \: we \: find : \\k = \frac{1    +   {sin}  \theta}{{cos\theta}} =  \frac{( - 1) \times cos\theta}{ - 1(1  -  {sin}  \theta) }  \\  k = \frac{1    +   {sin}  \theta}{{cos\theta}} =  \frac{ - cos\theta}{ - 1   +  {sin}  \theta}  \\  \: by \: theorem \: on \: equal \: ratios \: we \: have : \\ k = \frac{1    +   {sin}  \theta- cos\theta}{{cos\theta}- 1   +  {sin}  \theta}  \\  \implies \: k =  \frac{  {sin}  \theta- cos\theta + 1}{{sin}  \theta + {cos\theta}- 1  }  .....(2) \\ hence \: from \: (1) \: and \: (2) \: we \: find:  \\  \frac{  {sin}  \theta- cos\theta + 1}{{sin}  \theta + {cos\theta}- 1  } = \frac{1}{({sec} \theta   -  {tan}  \theta) }  \\ thus \: proved \\

Similar questions