Math, asked by rutunakhwa, 11 months ago

please solve the above trigonometry question​

Attachments:

Answers

Answered by Anonymous
1

 To\:prove:

 \sqrt{ \frac{1 - sin \alpha }{1 + sin \alpha } }  = sec \alpha  - tan \alpha

 Proof

 =  >  \sqrt{ \frac{1  -  sin  \alpha }{1 + sin  \alpha } }  \\  \\  =  > \sqrt{ \frac{1  -  sin  \alpha }{1  +  sin  \alpha } \times  \frac{1  -  sin  \alpha}{1 - sin \alpha }  } \\  \\  =  >  \sqrt{ \frac{ {(1 - sin \alpha) }^{2} }{ {(1)}^{2} -  {sin}^{2} \alpha   } }  \\  \\  =  >  \frac{1 - sin \alpha }{ \sqrt{1 - {sin \alpha  }^{2} } }  \\  \\  =  >  \frac{1 - sin \alpha }{ \sqrt{{cos }^{2} \alpha  } }  \\  \\  =  >  \frac{1 - sin \alpha }{cos}  \\  \\  =  >  \frac{1}{cos \alpha }  -  \frac{sin \alpha }{cos \alpha }  \\  \\  =  > sec \alpha  - tan \alpha

➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖

 Hope \:it \:helps

Answered by Anonymous
4

Given,

LHS

 =  \sqrt{ \frac{1 -  \sin \alpha  }{1 +  \sin\alpha } }

RHS

 =   \sec\alpha  -  \tan\alpha

#ŠüJäŁ ĐôÑgaŘè

I HOPE THAT YOU GOT ANSWER PLZ FOLLOW ME PLZ MAKE ME BRAINLIST ANSWER ︶︿︶

Attachments:
Similar questions