Physics, asked by toxicgaming9750, 1 year ago

please solve the attached jee question​

Attachments:

Answers

Answered by BrainlyPopularman
57

Question :

A uniformly charged thin spherical shell of radius R carries uniform surface charge density of   \sigma per unit area. It is made of two hemispherical shells, hold together by pressing them with force F. F is equal to ?

ANSWER :

GIVEN :

• A uniformly charged thin spherical shell of radius R carries uniform surface charge density of   \sigma per unit area.

• Sphere is made of two hemispherical shells, hold together by pressing them with force F.

TO FIND :

• Force = ?

SOLUTION :

We know that , Electrostatic pressure at a point on the surface on the uniformly charge sphere is –

  \\  \:  \:  \: \longrightarrow  \:  \:  \large { \boxed{ \bold{P =  \dfrac{ { \sigma}^{2} }{2 \in _{0} } }}} \\

• And –

 \\  \:  \:  \: \longrightarrow  \:  \:  \large { \boxed{ \bold{P =  \dfrac{F}{A } }}} \\

• So that –

 \\  \:  \:  \: \implies \:  \:  { \bold{\dfrac{ { \sigma}^{2} }{2 \in _{0} } =  \dfrac{F}{A }}} \\

 \\  \:  \:  \: \implies \:  \:  { \bold{F= \dfrac{{ \sigma}^{2} }{2 \in _{0} }(A)}} \\

 \\  \:  \:  \: \implies \:  \:  { \bold{F= \dfrac{{ \sigma}^{2} }{2 \in _{0} }( \pi {R}^{2} )}} \\

 \\  \:  \:  \: \longrightarrow \:  \large \:  { \boxed{ \bold{F= \dfrac{ \pi{ \sigma}^{2}  {R}^{2}}{2 \in _{0} }}}} \\

Answered by shadowsabers03
12

We consider the circular cross section inside the spherical shell (base of hemispheres, in other words) through which flux is executed and whose area is \sf{A=\pi R^2.}

As in the fig., two forces are acting on this section. Hence electric flux,

\longrightarrow\sf{\Phi=2EA\quad\quad\dots(1)}

By Gauss' Law, we have,

\longrightarrow\sf{\Phi=\dfrac{q}{\epsilon_0}\quad\quad\dots(2)}

Comparing (1) and (2),

\longrightarrow\sf{2EA=\dfrac{q}{\epsilon_0}}

\longrightarrow\sf{E=\dfrac{q}{2A\epsilon_0}}

But electric field, \sf{E=\dfrac{F}{q}.} Then,

\longrightarrow\sf{\dfrac{F}{q}=\dfrac{q}{2A\epsilon_0}}

\longrightarrow\sf{F=\dfrac{q^2}{2A\epsilon_0}}

\longrightarrow\sf{F=\dfrac{1}{2\epsilon_0}\cdot\dfrac{q^2}{A}\quad\quad\dots(3)}

We have, surface charge density,

\longrightarrow\sf{\sigma=\dfrac{q}{A}}

\longrightarrow\sf{\sigma^2=\dfrac{q^2}{A^2}}

\longrightarrow\sf{\dfrac{q^2}{A}=\sigma^2A}

\longrightarrow\sf{\dfrac{q^2}{A}=\pi\sigma^2R^2\quad\quad\dots(4)}

Substituting (4) in (3), we get,

\longrightarrow\underline{\underline{\sf{F=\dfrac{\pi\sigma^2R^2}{2\epsilon_0}}}}

Similar questions