Math, asked by nitisha123, 3 days ago

Please solve the attached question

Attachments:

Answers

Answered by adityasingh10812
1

Answer:

IDENTITY USED :-

★ cos2A = cos²A - sin²A

★ 1 = sin²A + cos²A

★ cosA/sinA = cotA

\begin{gathered} \\ \end{gathered}

SOLUTION :-

\begin{gathered} \\ \tt \: L.H.S = \dfrac{1 + cos2A}{1 - cos2A} \\ \\ \\ \bigstar\boxed{ \sf \: cos2A = {cos}^{2}A - {sin}^{2}A } \\ \\ \\ \tt \implies \: \dfrac{1 + ( {cos}^{2}A - {sin}^{2}A) }{1 - {(cos}^{2}A - {sin}^{2}A )} \\ \\ \\ \bigstar \boxed{ \sf \: 1 = {sin}^{2}A + {cos}^{2}A } \\ \\ \\ \tt \implies \: \dfrac{ \cancel{{sin}^{2}A} + {cos}^{2}A + {cos}^{2}A - \cancel {{sin}^{2}A }}{ {sin}^{2}A + \cancel{{cos}^{2}A }- \cancel {{cos}^{2}A} + {sin}^{2}A } \\ \\ \\ \tt \implies \: \dfrac{2 {cos}^{2}A }{2 {sin}^{2}A } \\ \\ \\ \bigstar \boxed{ \sf \: \dfrac{cosA}{sinA} = cotA} \\ \end{gathered}

L.H.S=

1−cos2A

1+cos2A

cos2A=cos

2

A−sin

2

A

1−(cos

2

A−sin

2

A)

1+(cos

2

A−sin

2

A)

1=sin

2

A+cos

2

A

sin

2

A+

cos

2

A

cos

2

A

+sin

2

A

sin

2

A

+cos

2

A+cos

2

A−

sin

2

A

2sin

2

A

2cos

2

A

sinA

cosA

=cotA

\begin{gathered} \\ \implies \tt \: {cot}^{2}A = R.H.S \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: (verified)\end{gathered}

⟹cot

2

A=R.H.S(verified)

\begin{gathered} \\ \end{gathered}

Similar questions