Math, asked by AdityaKaundilya, 1 month ago

Please solve the attached question with explanation​

Attachments:

Answers

Answered by King412
49

 \\    \underline{\underline{  \: \red{\Large \rm{Solution :- }}} }\\

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf \: A_n + A_n - 2 =  \frac{1}{n - 1}  \\

In this ,  \sf A_n is the Area bounded by the curve.

 \sf \: y =  \{ \tan(x) \}^{n}  = tan^{n} (x) \: and \: the \: lines \: x = 0 \: y \:  = 0 \: and \: x =  \dfrac{ \pi}{4}

Therefore,

  \\   \:  \:  \: \sf{A_n} =  \int_0^{ \frac{ \pi}{4} } \:  \tan^{n} (x)dx \\

  \\    \:  \:  \:  \:  \:  \: \longmapsto \:  \:  \: \sf{A_{n - 2}} =  \int_0^{ \frac{ \pi}{4} } \:  \tan^{n - 2} (x)dx \\

Consider,

  \\   \:  \:  \: \sf{A_n} =  \int_0^{ \frac{ \pi}{4} } \:  \tan^{n} (x)dx \\

  \\    \:  \:  \:  \:  \:  \: \longmapsto \:  \:  \: \sf{A_{n }} =  \int_0^{ \frac{ \pi}{4} } \: \{  \tan^{n - 2} (x)dx \} \{ { \tan}^{2}  (x) \}dx\\

  \\    \:  \:  \:  \:  \:  \: \longmapsto \:  \:  \: \sf{A_{n }} =  \int_0^{ \frac{ \pi}{4} } \: \{  \tan^{n - 2} (x)dx \} \{ { \sec}^{2}(x) - 1   \}dx\\

  \\    \:  \:  \:  \:  \:  \: \longmapsto \:  \:  \: \sf{A_{n }} =  \int_0^{ \frac{ \pi}{4} } \: \{  \tan^{n - 2} (x) \sec ^{2} (x) - { \tan}^{n - 2}(x) - \}dx\\

  \\    \:  \:  \:  \:  \:  \: \longmapsto \:  \:  \: \sf{A_{n }} =  \int_0^{ \frac{ \pi}{4} } \: \{  \tan^{n - 2} (x) \sec ^{2} (x)  \}dx  \:   - \int _0^{ \frac{\pi}{4} }  { \tan}^{n - 2}(x) dx\\

 \\    \:  \:  \:  \:  \:  \: \implies \:  \:  \: \sf{A_{n }} + A_{n - 2} =  \int_0^{ \frac{ \pi}{4} } \: \tan^{n - 2} (x) \sec ^{2} (x)  dx  \\

Now,

 \\    \:  \:  \:  \:  \:  \: \:  \:  \: \sf{A_{n }} + A_{n - 2} =  \int_0^{ \frac{ \pi}{4} } \: \tan^{n - 2} (x) \sec ^{2} (x)  dx  \\

Let u = tan (x)

 \\ \:  \:  \:  \:   \sf \implies \: du =  \sec ^{2} (x)dx \\

Also , When x = 0 , u = 0 and when  \sf x = \dfrac{\pi}{4} , u = 1

Therefore,

 \\    \:  \:  \:  \:  \:  \: \:  \:  \: \sf{A_{n }} + A_{n - 2} =  \int_0^{ \frac{ \pi}{4} } \: \tan^{n - 2} (x) \sec ^{2} (x)  dx  \\

 \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \longrightarrow \:  \int_0^{1} ( {u}^{n - 2} )du \\

 \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \longrightarrow \:   \bigg[ \frac{ {u}^{n - 1} }{n - 1}  \bigg] _0 ^{1} \\

 \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \longrightarrow \:   \bigg[ \frac{ 1 }{n - 1}   - 0\bigg] \\

 \\  \sf \:   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \longrightarrow \:   \frac{ 1 }{n - 1}    \\

Similar questions