Math, asked by Anonymous, 6 hours ago

Please solve the attachment!!

No spam!!

Attachments:

Answers

Answered by mathdude500
6

Given Question

A lines makes an angle α, β, γ with x - axis, y - axis and z - axis respectively, then cos2α + cos2β + cos2γ is

(a) 2

(b) 1

(c) - 2

(d) - 1

\large\underline{\sf{Solution-}}

Given that lines makes an angle α, β, γ with x - axis, y - axis and z - axis respectively.

So, By definition of direction cosines,

\rm :\longmapsto\:l = cos \alpha

\rm :\longmapsto\:m = cos \beta

\rm :\longmapsto\:n = cos \gamma

So,

\rm :\longmapsto\: {l}^{2} +  {m}^{2}  +  {n}^{2}  = 1

\rm :\longmapsto\: {cos}^{2} \alpha  +  {cos}^{2} \beta  +  {cos}^{2} \gamma  = 1

On multiply by 2 on both sides we get

\rm :\longmapsto\: 2{cos}^{2} \alpha  +  2{cos}^{2} \beta  + 2 {cos}^{2} \gamma  = 2

can be further rewritten as

\rm :\longmapsto\: 2{cos}^{2} \alpha  - 1 + 1 +  2{cos}^{2} \beta  - 1 + 1 + 2 {cos}^{2} \gamma  - 1 + 1 = 2

\rm :\longmapsto\: (2{cos}^{2} \alpha  - 1)+ (2{cos}^{2} \beta  - 1)+ (2 {cos}^{2} \gamma  - 1) + 3= 2

\rm :\longmapsto\:cos2 \alpha  + cos2 \beta  + cos2 \gamma   + 3= 2

 \red{ \bigg\{  \sf \: \because \: cos2x =  {2cos}^{2}x - 1  \bigg\}}

\rm :\longmapsto\:cos2 \alpha  + cos2 \beta  + cos2 \gamma= 2 - 3

\rm :\longmapsto\:cos2 \alpha  + cos2 \beta  + cos2 \gamma=  - 1

Hence,

\bf\implies \:\boxed{\tt{  \: cos2 \alpha  + cos2 \beta  + cos2 \gamma  =  - 1 \: }}

So, option (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Direction cosines of a line segment is defined as the cosines of the angle which a line makes with the positive direction of respective axis.

The scalar components of unit vector always give direction cosines.

The scalar components of a vector gives direction ratios.

Answered by XxitzZBrainlyStarxX
15

Question:-

A lines makes an angle α, β, γ with x - axis, y - axis and z - axis respectively, then cos2α + cos2β + cos2γ is

(a) 2

(b) 1

(c) - 2

(d) - 1

Given:-

A line makes angles α, β, γ with x - axis, y - axis and z - axis respectively.

To Find:-

cos2α + cos2β + cos2γ is equal to = ?

Solution:-

As we know direction Cosines of a line are l,m,n.

So, we can write l = cos²α, m = cos²β, n = cos²γ.

Now using Property,

 \sf  \red \because \red {l {}^{2} + m {}^{2} + n {}^{2}  }

Putting values of l,m,n we get,

cos²α + cos²β + cos²γ = 1.

We know that,

 \sf \blue{cos {}^{2} \theta =  \frac{1 +cos {}^{2}  \theta }{2}  }

Thus, we write about equations as

 \sf (\frac{1 + cos {}^{2}  \alpha }{2}  )+ ( \frac{1 + cos {}^{2}  \beta }{2} ) +(  \frac{1 + cos {}^{2} \gamma  }{2} )

1 + cos²α + cos²β + cos²γ = 2.

3 + cos²α + cos²β + cos²γ = 2.

cos²α + cos²β + cos²γ = 2 – 3.

cos²α + cos²β + cos²γ = 1.

Answer:-

 \sf  \red{\: cos {}^{2} α + cos {}^{2} β + cos {}^{2} γ  \: is}  \:  \\   \sf \red{ \: equal  \: to \:  = 1.}

Hope you have satisfied.

Similar questions