Math, asked by kushal2208, 11 months ago

Please solve the following and give a step-by- step explanation.​

Attachments:

Answers

Answered by dakshmhatre828
0

Answer:

We have,

ABC is a right angle triangle.

In which \angle ACB={{90}^{o}}∠ACB=90

o

And CD\bot AB\,and\,DE\bot ABCD⊥ABandDE⊥AB

Where D is any point in AB and E is any point in CB.

Prove that:- C{{D}^{2}}\times AC=AD\times AB\times DECD

2

×AC=AD×AB×DE

Proof:-

In\,\Delta ACB\,and\,\Delta ADCInΔACBandΔADC

\angle CAB\cong \angle DAC\,\,\left( \text{Reflexive} \right)∠CAB≅∠DAC(Reflexive)

\angle ACB\cong \angle ADC\,\left( \text{Right}\,\text{angle} \right)∠ACB≅∠ADC(Rightangle)

Thus, By AA similarity.

Then,

\Delta ACB\sim \Delta ADC\,\,\,......\,\,\left( 1 \right)ΔACB∼ΔADC......(1)

\Rightarrow \dfrac{AC}{AD}=\dfrac{AB}{AC}⇒

AD

AC

=

AC

AB

\Rightarrow A{{C}^{2}}=AB\times AD\,......\,\,\left( 2 \right)⇒AC

2

=AB×AD......(2)

Now, Similarly

\Delta ACB\sim \Delta CDB\,\,......\,\,\left( 3 \right)ΔACB∼ΔCDB......(3)

Now,

In\,\Delta CED\,and\,\Delta CDBInΔCEDandΔCDB

\angle ECD\cong \angle DCB\,\,\left( \text{Reflexive} \right)∠ECD≅∠DCB(Reflexive)

\angle CED\cong \angle CDB\,\left( \text{Right}\,\text{angle} \right)∠CED≅∠CDB(Rightangle)

By AA similarity.

\Delta CED\sim \Delta CDB\,\,.......\,\,\left( 4 \right)ΔCED∼ΔCDB.......(4)

From equation (3) and (4) to,

\Delta ACB\sim \Delta CED\,\,......\,\,\left( 5 \right)ΔACB∼ΔCED......(5)

By equation (1) and (5) to, we get,

\Delta ADC\sim \Delta CEDΔADC∼ΔCED

\dfrac{AC}{CD}=\dfrac{DC}{ED}

CD

AC

=

ED

DC

C{{D}^{2}}=AC\times DE\,\,......\,\,\left( 6 \right)CD

2

=AC×DE......(6)

From equation (2) to,

A{{C}^{2}}=AB\times ADAC

2

=AB×AD

On multiplying both side by C{{D}^{2}}CD

2

and we get,

C{{D}^{2}}\times A{{C}^{2}}=C{{D}^{2}}\times AB\times ADCD

2

×AC

2

=CD

2

×AB×AD

C{{D}^{2}}\times A{{C}^{2}}=AC\times DE\times AB\times ADCD

2

×AC

2

=AC×DE×AB×AD

C{{D}^{2}}\times AC=DE\times AB\times ADCD

2

×AC=DE×AB×AD

C{{D}^{2}}\times AC=AD\times AB\times DECD

2

×AC=AD×AB×DE

Hence proved.

Similar questions