please solve the following attachment...
Answers
Step-by-step explanation:
Hey there..Here's the Solution.
1. Prove:- √1-cos∅/√1+cos∅ = Cosec∅-Cot∅
2. Prove:- 1+sin∅/1-sin∅ = Cot²∅/(cosec∅-1)²
→Solⁿ1
=> Squaring both sides
=> 1-cos∅/1+cos∅ = (Cosec∅-Cot∅)²
=> Taking RHS.
=> (Cosec∅-cot∅)²= cosec²∅-2cosec∅cot∅+
cot²∅
[ converting into sin and cos]
=> 1/Sin²∅ - 2×1/sin×cos/sin + cos²∅/sin²
=> 1/Sin²∅-2cos∅/sin²∅+ cos²∅/sin²∅
[ since all denominators are sin²∅ we will simply write the numerators with their signs]
=> 1-2cos∅+cos²∅/sin²∅
Converting numerator into (a-b)² and sin²∅ into 1-cos²∅ as sin²∅+cos²∅=1
= (1-cos∅)²/1-cos²∅
Converting 1-cos²∅ into (a+b)(a-b)
=> (1-cos∅)²/(1+cos∅)(1-cos∅)
Cancelling square in numerator and 1-cos∅ in denominator
= 1-cos∅/1+cos∅ = LHS
Hence Proved!!!
→Solⁿ2
=> taking RHS
=> cot²∅/(cosec∅-1)²=cot²∅/cosec²∅ -2cosec∅+1
[ converting into Sin and cos]
=> cos²∅/sin²∅/1/sin²∅-2/sin∅+1
=> cos²∅/sin²∅/1+sin²∅/sin²∅-2/sin∅
=> cos²∅/sin²∅/1+sin²∅-2sin/sin²∅
[Since Cos²∅= 1-sin²∅ and 1+sin²-2sin=(a-b)²]
=> 1-sin²∅/sin²∅ × Sin²∅/(1-sin∅)²
[sin²∅ and sin²∅ get cancelled]
= 1-sin²∅/(1-sin∅)²
[since 1-sin²∅= a²-b²= (a+b)(a-b)]
=> (1+sin∅)(1-sin∅)/(1-sin∅)²
= 1+sin∅/1-sin∅=LHS
Hence Proved!!!!
I HOPE IT HELPS YOU.... :) :)