Physics, asked by kumarsahaaman228, 2 months ago

please, solve the following problem​

Attachments:

Answers

Answered by Athul4152
1

 \bf\huge\underline{\underline{ Question  :- }}

A batter hits a base ball so that it leaves the bat with an initial speed 37m/s at an angle 53∘. Find the position of the ball and the magnitude and direction of its velocity after 2 seconds. Treat the baseball as a projectile.

 \bf\huge\underline{\underline{ Given :- }}

  • u = 37 m/s

  •   \theta = 53 °

  • t = 2 s

 \bf\huge\underline{\underline{ To \: Find:- }}

  • direction of velocity

  • magnitude of velocity

 \bf\huge\underline{\underline{ Answer :- }}

  • u = 37 m/s

  •   \theta = 53 °

  • t = 2 s

Vertical Displacement

  • \boxed{\red{\bf s =  u_{y} t - \frac{1}{2} gt² }}\\

  • \bf s =  uSin(\theta ) t - \frac{1}{2} gt² \\

  • \bf s =  37×Sin(53 )×2 - \frac{1}{2} ×10×4 \\

  • \bf\red{ s = 39.5 m}

 \rule{10cm}{0.05cm}

Horizontal Displacement

  • \boxed{\red{\bf s =  u_{x} t - \frac{1}{2} gt² }}\\

  • \bf s =  uCos(\theta ) t - \frac{1}{2} gt² \\

  • \bf s =  37×Cos(53 )×2 - \frac{1}{2} ×10×4 \\

  • \bf\red{s = 44.52 m}

 \rule{10cm}{0.05cm}

∴ So, After 2 Sec the baseball will be lying 39.5m above its point of projection and 44.52m ahead of its point of projection.

 \rule{10cm}{0.05cm}

Now , let the vertical component of   \bf v_{y} be v⁰_{y} and horizontal component \bf   v_{x} be v⁰_{x}

  •    v⁰_{y} = v_{y} - gt

  • \bf \red{\implies} v⁰_{y} = vSin(\theta)  - gt

  • \bf \red{\implies}  v⁰_{y} = vSin(53)  - 10 × 2

  • \bf \red{\implies}  v⁰_{y} = 9.95 m/s

 \rule{10cm}{0.05cm}

  •    \bf v⁰_{x} = v_{x} - gt

  • \bf \red{\implies} v⁰_{x} = vCos(\theta)  - gt

  • \bf \red{\implies}  v⁰_{x} = vCos(53)  - 10 × 2

  • \bf \red{\implies}  v⁰_{x}  = 22.27m/s

 \rule{10cm}{0.05cm}

Magnitude of velocity after 2 second

  • \bf \red{\implies}  V =  \bf\sqrt{ ( v⁰_{x} )² + (v⁰_{y})² }

  • \red{\implies}  V =  \bf\sqrt{ 22.27² + 9.95² }

  • \bf \red{\implies}  V = \bf\red{ 24. 23  m/s }

  •  \bf \theta = tan^{-1} \bigg(\frac{ v⁰_{y}}{v⁰_{x}}\bigg) \\

  • \bf \red{\implies} \green{\theta = 23.2 °  }

 \rule{10cm}{0.05cm}

magnitude of velocity = 24.23 m/s

direction = 23.2°

Similar questions