Please solve the following question from trigonometry:
Attachments:
HellostudyFriend:
nothing as such is given
Answers
Answered by
1
Answer:this is how u do it ...i did it by calculating cos(α+β) first
a2+b2=sin2α+sin2β+2sinαsinβ+cos2α+cos2β+2cosαcosβ
a2+b2=(sin2α+cos2α)+(sin2β+cos2β)+2(cosαcosβ+sinαsinβ)
a2+b2=2(1+cos(α−β))
a2+b22=(1+cos(α−β))
b2−a2=(cos2α−sin2α)+(cos2β−sin2β)+2cosαcosβ−2sinαsinβ
b2−a2=(cos2α−(1−cos2α))+(1−sin2β)−sin2β))+2(cosαcosβ−sinαsinβ)
b2−a2=2(cos2α−sin2β+cos(α+β))
b2−a2=2(cos(α+β)cos(α−β)+cos(α+β))
b2−a22=cos(α+β){cos(α−β)+1}
b2−a22=cos(α+β){b2+a22}
cos(α+β)=a2+b2a2−b2
Then just calculate sin(α+β) by 1−cos2(α+β)
Step-by-step explanation:
Similar questions