Math, asked by VJstyles, 10 months ago

please solve the following simultaneous equations.​

Attachments:

Answers

Answered by TooFree
2

Answer:

x = 16/17 and y = 1/17

Step-by-step explanation:

\sqrt{\dfrac{x}{y} } = 4 \text { ---------------- [ 1 ]}

\dfrac{1}{x}  + \dfrac{1}{y} = \dfrac{1}{xy}   \text { ---------------- [ 2 ]}

From [ 1 ]:

\sqrt{\dfrac{x}{y} } = 4

\dfrac{x}{y}  = 16

x  = 16y \text{ --------------- [ 3 ]}

From[2}:

\dfrac{1}{x}  + \dfrac{1}{y} = \dfrac{1}{xy}

\dfrac{y + x}{xy}  = \dfrac{1}{xy}

y + x = 1 \text{ ------------- [ 4 ] }

Sub [ 3 ] into [ 4 ]:

y + x = 1

y + 16y = 1

17y = 1

y = \dfrac{1}{17}

Sub value of y into [ 4 ] :

y + x = 1

\dfrac{1}{17} + x = 1

x = 1 - \dfrac{1}{17}

x = \dfrac{16}{17}

Answer: x = 16/17 and y = 1/17

Similar questions