please solve the given question
Answers
Answer:
(a),(d)
Step-by-step explanation:
Two circles are said to intersect orthogonally if their angle of intersection is a right angle.
Let the equations of the two circles be:
x² + y² + 2g₁x + 2f₁y + c₁ = 0 and x² + y² + 2g₂x + 2f₂y + c₂ = 0.
The two circles will intersect orthogonally if 2g₁g₂ + 2f₁f₂ = c₁ + c₂.
Now,
Given circles are:
x² + y² + 2kx + 2y + 6 = 0
x² + y² + 2kx + k = 0.
They intersect orthogonally.
2g₁g₂ + 2f₁f₂ = c₁ + c₂
2(g₁g₂ + f₁f₂) = c₁+c₂
⇒ 2(-k * -k + 0) = 6 + k
⇒ 2(k² + 0) = 6 + k
⇒ 2k² = 6 + k
⇒ -2k² + k + 6 = 0
⇒ 2k² - k - 6 = 0
⇒ 2k² + 3k - 4k - 6 = 0
⇒ k(2k + 3) - 2(2k + 3) = 0
⇒ (k - 2)(2k + 3) = 0
⇒ k = 2, -3/2
Hope it helps!
Hey Dear !
Answer :- a and d .
=) Let the equations of the two circles be:
the equations of the two circles be:x² + y² + 2g₁x + 2f₁y + c₁ = 0 and x² + y² + 2g₂x + 2f₂y + c₂ = 0.
the equations of the two circles be:x² + y² + 2g₁x + 2f₁y + c₁ = 0 and x² + y² + 2g₂x + 2f₂y + c₂ = 0.The two circles will intersect foursquare if 2g₁g₂ + 2f₁f₂ = c₁ + c₂.
if 2g₁g₂ + 2f₁f₂ = c₁ + c₂.Now ,
Given circles here :-
x² + y² + 2kx + 2y + 6 = 0
x² + y² + 2kx + 2y + 6 = 0x² + y² + 2kx + k = 0.
x² + y² + 2kx + 2y + 6 = 0x² + y² + 2kx + k = 0.They intersect foursquare .
2g₁g₂ + 2f₁f₂ = c₁ + c₂
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0⇒ 2k² - k - 6 = 0
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0⇒ 2k² - k - 6 = 0⇒ 2k² + 3k - 4k - 6 = 0
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0⇒ 2k² - k - 6 = 0⇒ 2k² + 3k - 4k - 6 = 0⇒ k(2k + 3) - 2(2k + 3) = 0
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0⇒ 2k² - k - 6 = 0⇒ 2k² + 3k - 4k - 6 = 0⇒ k(2k + 3) - 2(2k + 3) = 0⇒ (k - 2)(2k + 3) = 0
2g₁g₂ + 2f₁f₂ = c₁ + c₂2(g₁g₂ + f₁f₂) = c₁+c₂⇒ 2(-k * -k + 0) = 6 + k⇒ 2(k² + 0) = 6 + k⇒ 2k² = 6 + k⇒ -2k² + k + 6 = 0⇒ 2k² - k - 6 = 0⇒ 2k² + 3k - 4k - 6 = 0⇒ k(2k + 3) - 2(2k + 3) = 0⇒ (k - 2)(2k + 3) = 0⇒ k = 2 , -3/2 (ans.)