Math, asked by MichWorldCutiestGirl, 3 days ago

Please solve the given question

y = {(cotx)}^{ {(cotx)}^{ {(cotx)}^{ - - - -} } } \: \\ \\ find \: \frac{dy}{dx} \: at \: x = \frac{\pi}{4}

Don't spam​

Answers

Answered by mathdude500
33

\large\underline{\sf{Solution-}}

Given that,

\rm \: y =  {(cotx)}^{ {(cotx)}^{(cotx) -  -  - } }  \\

can be rewritten as

\rm \: y =  {(cotx)}^{y}  \\

On taking log on both sides, we get

\rm \: logy =  log{(cotx)}^{y}  \\

We know,

\boxed{\sf{  \:log {x}^{y} = y \: logx \: }} \\

So, on using this result, we get

\rm \: logy = y log{(cotx)}  \\

On dividing both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logy \:  =  \: \dfrac{d}{dx} \: y \: log(cotx) \\

We know,

\boxed{\sf{  \:\dfrac{d}{dx}logx =  \frac{1}{x} \: }} \\

and

\boxed{\sf{  \:\dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:   + \: v\dfrac{d}{dx}u \:  \: }} \\

So, using these results, we get

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = y \: \dfrac{d}{dx}log(cotx) + log(cotx)\dfrac{d}{dx}y \\

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = y \: \times \dfrac{1}{cotx} \times \dfrac{d}{dx}(cotx) + log(cotx)\dfrac{dy}{dx} \\

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} -  log(cotx)\dfrac{dy}{dx}  = \dfrac{y}{cotx}( -  {cosec}^{2}x)  \\

\rm \: \bigg(\dfrac{1}{y} -  log(cotx)\bigg)\dfrac{dy}{dx}  = -  \dfrac{y {cosec}^{2} x}{cotx} \\

\rm \: \bigg(\dfrac{1 - ylog(cotx)}{y} \bigg)\dfrac{dy}{dx}  = -  \dfrac{y {cosec}^{2} x}{cotx} \\

\rm\implies \:\rm \: \dfrac{dy}{dx}  = -  \dfrac{ {y}^{2}  {cosec}^{2} x}{cotx \: [1 - y \: log(cotx)]} \\

Now, we have

\rm \: y =  {(cotx)}^{y}  \\

So,

\rm \: At \: x = \dfrac{\pi}{4} \\

\rm \: y =  {\bigg(cot\dfrac{\pi}{4} \bigg) }^{y}  \\

\rm \: y =  {1}^{y}  \\

\rm\implies \:y = 1 \\

So, on substituting these values, we get

\rm \: \dfrac{dy}{dx}  = -  \:  \dfrac{ {1}^{2}  {cosec}^{2} \dfrac{\pi}{4}}{cot\dfrac{\pi}{4} \: \bigg[1 - 1 \times \: logcot\dfrac{\pi}{4}\bigg]} \\

\rm \: \dfrac{dy}{dx}  = -  \:  \dfrac{ {( \sqrt{2}) }^{2} }{1 \: \bigg[1 -\: log1\bigg]} \\

\rm \: \dfrac{dy}{dx}  = -  \:  \dfrac{ 2 }{1 \: \bigg[1 -\: 0\bigg]} \\

\rm\implies \:\dfrac{dy}{dx} \:  =  \:  -  \: 2 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cox & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by talpadadilip417
14

Step-by-step explanation:

 \pink{ \text{Given, \( \tt y=(\cot x)^{(\cot x)^{(\cot x) \cdots \infty}} \)}}

 \color{red} \text{To find, prove \( \tt \dfrac{d y}{d x}=-2 \) at \( \tt x=\dfrac{\pi}{4} \)}

 \color{blue} \text{ \boxed{ \boxed{ \tt \: Solution:} } \qquad \: Here, \( \tt y=(\cot x)^{(\cot x)^{\cot x \ldots \infty}} \)}

 \color{darkcyan} \tt\[ y=(\cot x)^{y} \]

 \color{darkred} \text{ taking \( \log \) on both sides}

 \color{violet} \:  \:  \tt\[ \log y=\log (\cot x)^{y} \]  \\   \color{violet}\tt \[ \log y=y \log \cot x \]

 \text{differentiating with respect to \( \sf x .\)}

 \color{darkviolet}\[ \begin{aligned}  \tt\frac{1}{y} \frac{d y}{d x} & \tt=y \frac{d}{d x} \log \cot x+\log \cot \frac{d y}{d x} \\  \\ \tt \frac{1}{y} \frac{d y}{d x} & \tt=\frac{y}{\cot x} \frac{d}{d x} \cot x+\log \cot x \frac{d y}{d x} \\ \\  \tt\frac{d y}{d x}\left[\frac{1}{y}-\log \cot x\right] &\tt=\frac{y}{\cot x} \operatorname{cosec}^{2} x \\ \\ \tt \left[\frac{d y}{d x}\right]_{x=\frac{\pi}{4}} &  \tt\frac{y \operatorname{cosec}^{2} \frac{\pi}{4}}{\cot \frac{\pi}{4}} \cdot  \tt\frac{y}{1-y \log \cot \frac{\pi}{4}} \\ \\  \tt\left[\frac{d y}{d x}\right]_{\frac{\pi}{4}} &\tt=\frac{y^{2}(\sqrt{2})^{2}}{1(1-y \log \cot 1]} \\ \\  & \tt=  \frac{2( - 1) {}^{2} }{ - 1 - 0} \\  \\  \tt\left[\frac{d y}{d x}\right]_{\frac{\pi}{4}} &\tt=-2 \\  \\ &\text{Hence proved. }\end{aligned} \]

Similar questions