Math, asked by whitepearl434, 2 months ago

please solve the limit .. ans is 1/4√3 i need step by step solving . i will mark them as brainliest​

Attachments:

Answers

Answered by Anonymous
9

Answer:

1/(4√3)

Step-by-step explanation:

Directly substituting the limits results (0/0) which is an indeterminate quantity. Therefore we have to choose different method.

We will solve this question using the method of rationalisation.

 \implies \lim \limits_{x \to 0} \dfrac{ \sqrt{3 + x} -  \sqrt{3 - x}  }{ {x}^{2}  + 4x}

{ \implies \lim \limits_{x \to 0} \dfrac{ \sqrt{3 + x} -  \sqrt{3 - x}  }{x(x + 4)}  \times  \dfrac{ \sqrt{3 + x}   +  \sqrt{3 - x} }{ \sqrt{3 + x}  +  \sqrt{3 - x} } }

{ \implies \lim \limits_{x \to 0} \dfrac{ (\sqrt{3 + x})^{2} -  (\sqrt{3 - x} )^{2}  }{x(x + 4)(\sqrt{3 + x}  +  \sqrt{3 - x})}   }

{ \implies \lim \limits_{x \to 0} \dfrac{3 + x - 3 + x}{x(x + 4)(\sqrt{3 + x}  +  \sqrt{3 - x})}   }

{ \implies \lim \limits_{x \to 0} \dfrac{2x}{x(x + 4)(\sqrt{3 + x}  +  \sqrt{3 - x})}   }

{ \implies \lim \limits_{x \to 0} \dfrac{2}{(x + 4)(\sqrt{3 + x}  +  \sqrt{3 - x})}   }

{ \implies \dfrac{2}{(0+ 4)(\sqrt{3 + 0}  +  \sqrt{3 - 0})}   }

{ \implies \dfrac{2}{4(2\sqrt{3})}   }

 \implies \dfrac{1}{4\sqrt{3}}

Similar questions