Math, asked by Aditya5408, 1 month ago

Please solve the linear equations of the A, B, and D don't write of C please don't write I don't know and Don't write other subjects question or I will report to brainly.​​​

Attachments:

Answers

Answered by mathdude500
18

\large\underline{\sf{Solution-a}}

Given linear equation is

\rm :\longmapsto\:0.6a - 15 =  - 1.2a + 3

On transposition we get

\rm :\longmapsto\:0.6a  +  1.2a = 15 + 3

\rm :\longmapsto\:1.8a = 18

\rm :\longmapsto\:a = \dfrac{18}{1.8} = \dfrac{18 \times 10}{18}   = 10

\bf\implies \:a = 10

Verification :-

Consider LHS

\rm :\longmapsto\:0.6a - 15

Put value of a = 10, we get

\rm \:  =  \:  \:0.6 \times 10 - 15

\rm \:  =  \:  6 - 15

\rm \:  =  \:   - 9

Consider, RHS

\rm :\longmapsto\:  - 1.2a + 3

On substituting a = 10, we get

\rm \:  =  \:  \: - 1.2 \times 10 + 3

\rm \:  =  \:  \: - 12 + 3

\rm \:  =  \:  \: - 9

Hence, Verified

\large\underline{\sf{Solution-b}}

Given linear equation is

\rm :\longmapsto\:\dfrac{4a}{5}  - \dfrac{1}{2}  = \dfrac{2a}{3}  - \dfrac{3}{4}

On transposition we get

\rm :\longmapsto\:\dfrac{4a}{5}  -\dfrac{2a}{3}   =  \dfrac{1}{2} - \dfrac{3}{4}

\rm :\longmapsto\:\dfrac{12a - 10a}{15}   =  \dfrac{2 - 3}{4}

\rm :\longmapsto\:\dfrac{2a}{15}   =  -  \dfrac{1}{4}

\bf\implies \:a =  -  \: \dfrac{15}{8}

Verification :-

\rm :\longmapsto\:\dfrac{4a}{5}  - \dfrac{1}{2}  = \dfrac{2a}{3}  - \dfrac{3}{4}

On substituting the value of a, we get

\rm :\longmapsto\: - \dfrac{4}{5} \times  \dfrac{15}{8}   - \dfrac{1}{2}  = -  \dfrac{2}{3} \times \dfrac{15}{8}  - \dfrac{3}{4}

\rm :\longmapsto\: - \dfrac{3}{2}  - \dfrac{1}{2}  =  - \dfrac{5}{4}  - \dfrac{3}{4}

\rm :\longmapsto\: - \dfrac{4}{2}  =  - \dfrac{8}{4}

\rm :\longmapsto\: - 2 =  - 2

Hence, Verified

\large\underline{\sf{Solution-d}}

Given Linear equation is

\rm :\longmapsto\:\dfrac{c - 3}{3}  + \dfrac{c + 5}{5}  = \dfrac{c - 2}{2}

\rm :\longmapsto\:\dfrac{5(c - 3) + 3(c + 5)}{15}    = \dfrac{c - 2}{2}

\rm :\longmapsto\:\dfrac{5c - 15 + 3c +15}{15}    = \dfrac{c - 2}{2}

\rm :\longmapsto\:\dfrac{8c}{15}    = \dfrac{c - 2}{2}

\rm :\longmapsto\:16c = 15c - 30

\rm :\longmapsto\:16c - 15c =  - 30

\bf\implies \:c =  -  \: 30

Verification

\rm :\longmapsto\:\dfrac{c - 3}{3}  + \dfrac{c + 5}{5}  = \dfrac{c - 2}{2}

On substituting the value of c = - 30, we get

\rm :\longmapsto\:\dfrac{ - 30- 3}{3}  + \dfrac{ - 30 + 5}{5}  = \dfrac{ - 30 - 2}{2}

\rm :\longmapsto\:\dfrac{ - 33}{3}  + \dfrac{ - 25}{5}  = \dfrac{ - 32}{2}

\rm :\longmapsto\: - 11 - 5 =  - 16

\rm :\longmapsto\: - 16 =  - 16

Hence, Verified

Similar questions