Math, asked by sky11111, 1 year ago

please solve the math and give its solution

Attachments:

Answers

Answered by Anonymous
5

\underline{\mathsf{\mathfrak{SOLUTION}}}

\textsf{From the point ( 4 , 3 ) perpendicular is dropped on both axes .}

On the x - axis the perpendicular will fall on ( 4 , 0 )

By Distance formula :

\mathsf{p=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

\mathsf{\implies p=\sqrt{(4-4)^2+(3-0)^2}}

\mathsf{\implies p=\sqrt{0^2+3^2}}

\mathsf{\implies p=\sqrt{9}}

\mathsf{\implies p=3}

On the y-axis the perpendicular will fall on ( 0 , 3 )

Again by distance formula :

\mathsf{q=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

\mathsf{\implies q=\sqrt{(4-0)^2+(3-3)^2}}

\mathsf{\implies q=\sqrt{4^2+0^2}}

\mathsf{\implies q=\sqrt{16}}

\mathsf{\implies q=4}

\textsf{ p = 3 and q = 4 }

\textsf{L.C.M of p and q is 12}

\mathsf{4p=12}

\mathsf{3q=12}

\mathsf{\implies 4p=3q}


\textsf{\underline{\underline{\underline{\huge{ANSWER}}}}}

\underline{\bf{OPTION\:\:C}}


\textsf{Hope it helps :-)}

____________________________________________________________________


sky11111: great answer... thanks boss....
Anonymous: welcome :-)
Similar questions