Math, asked by avinashmurmu99311, 8 months ago

Please solve the matrice​

Attachments:

Answers

Answered by Anonymous
12

AnswEr :

Given matrix,

\sf A = \left[\begin{array}{c c c}2 & 1 & - 1 \\ 0 & 1 & - 2 \end{array} \right]_{2 \times 3}

The above matrix is of the order 2 × 3,the order of the transpose would be 3 × 2

\implies \sf A^t = \left[\begin{array}{c c }2 & 0 \\ 1 &  1 \\ -1 & - 2\end{array}\right]_{3 \times 2}

Now,

\sf{A^t \times  A} \\ \\ \longrightarrow \ \left[\begin{array}{c c }2 & 0 \\ 1 &  1 \\ -1 & - 2\end{array}\right] \left[\begin{array}{c c c}2 & 1 & - 1 \\ 0 & 1 & - 2 \end{array}\right]\\ \\ \longrightarrow  \left[\begin{array}{c c c}4  & 2 & -2 \\2 & 2 & -3 \\ -2& -3 & 3 \end{array}\right]_{3 \times 3}

Here,the order of the matrix is 3 × 3

Also,

\sf A \times A^t \\ \\ \longrightarrow \  \left[\begin{array}{c c c}2 & 1 & - 1 \\ 0 & 1 & - 2 \end{array}\right] \left[\begin{array}{c c }2 & 0 \\ 1 &  1 \\ -1 & - 2\end{array}\right]  \\ \\ \longrightarrow  \left[\begin{array}{c c } 6 & 3 \\ 5  & 5 \end{array}\right]_{2 \times 2}

The order of the above matrix is 2 × 2

We notice that multiplication of matrices doesn't obey commutative law .

Similar questions