Math, asked by kingofbrainly012, 11 months ago

please solve the problem ​

Attachments:

Answers

Answered by Anonymous
9

Given :

  • \sf{\dfrac{AO}{OC}\:=\:\dfrac{1}{2}}

  • \sf{\dfrac{BO}{OD}\:=\:\dfrac{1}{2}}
  • AB = 5 cm.

To Find :

  • Length of DC.

Solution :

\sf{\dfrac{AO}{OC}\:=\:\dfrac{1}{2}}

\sf{2AO\:=\:OC\:\:\:(1)}

Now, in Δ AOB and ΔDOC,

\sf{\angle\:AOB\:=\:\angle\:DOC}

\bold{\big[Vertically\:Opposite\:Angles\big]}

\sf{\angle\:OAB\:=\:\angle\:OCD}

\bold{\big[Alternate\:Angles\big]}

°ΔOAB ~ Δ OCD

\bold{\big[By\:AA\:test\:of\:similarlity\big]}

° \sf{\dfrac{AO}{OC}\:=\:\dfrac{AB}{CD}\:=\:\dfrac{BO}{DO}}

\bold{\big[Corresponding\:sides\:of\:similar\:triangle\:are\:in\:proportion\big]}

\sf{\dfrac{AO}{OC}\:=\:\dfrac{AB}{CD}}

\sf{\dfrac{AO}{2AO}\:=\:\dfrac{5}{DC}}

\bold{\big[From\:equation\:(2)\big]}

\sf{\dfrac{1}{2}\:=\:\dfrac{5}{DC}}

\sf{DC\:=\:5\:\times\:2}

\sf{DC\:=\:10\:cm}

\large{\boxed{\bold{Length\:of\:DC\:=\:10\:cm}}}

Similar questions