Math, asked by neilsylvainefernande, 9 months ago

Please solve the problem ​

Attachments:

Answers

Answered by Anonymous
10

» Question :

If \purple{\sf{\dfrac{cot\:A}{1 + cosec\:A} - \dfrac{cot\:A}{1 - cosec\:A} = \dfrac{K}{cos\:A}}}

then find the value of "K".

» Solution :

» To Find :

The value of "K" in the Equation.

» We Know :

  • \sf{Cot\theta = \dfrac{cos\theta}{sin\theta}}

  • \sf{cosec\theta = \dfrac{1}{sin\theta}}

  • \sf{(a + b)(a - b) = a^{2} - b^{2}}

» Calculation :

\sf{\dfrac{cot\:A}{1 + cosec\:A} - \dfrac{cot\:A}{1 - cosec\:A} = \dfrac{K}{cos\:A}}

Using the identity,

\sf{(a + b)(a - b) = a^{2} - b^{2}}

We Get ,

\sf{\Rightarrow \dfrac{cot\:A(1 - cosec\:A) - cot\:A(1 + cosec\:A}{1^{2} - cosec^{2}A}) = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow \dfrac{cot\:A - cot\:Acosec\:A - cot\:A - cot\:Acosec\:A}{1 - cosec^{2}A}= \dfrac{K}{cos\:A}}

Substituting the values of cot A and cosec A , in the Equation, we get :

\sf{\Rightarrow \dfrac{\cancel{\dfrac{cos\:A}{sin\:A}} - \left(\dfrac{cos\:A}{sin\:A}\right)\left(\dfrac{1}{sin\:A}\right) - \cancel{\dfrac{cos\:A}{sin\:A}} - \left(\dfrac{cos\:A}{sin\:A}\right)\left(\dfrac{1}{sin\:A}\right)}{\left(1 - \dfrac{1}{sin^{2}A}\right)}= \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow  \dfrac{-\left(\dfrac{cos\:A}{sin\:A}\right)\left(\dfrac{1}{sin\:A}\right) - \left(\dfrac{cos\:A}{sin\:A}\right)\left(\dfrac{1}{sin\:A}\right)}{\left(1 - \dfrac{1}{sin^{2}A}\right)} = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow  \dfrac{-\left(\dfrac{cos\:A}{sin^{2}A}\right) - \left(\dfrac{cos\:A}{sin^{2}A}\right)}{\left(1 - \dfrac{1}{sin^{2}A}\right)} = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow  \dfrac{\left(\dfrac{- cos\:A - cos\:A}{sin^{2}A}\right)}{\left(\dfrac{sin^{2}A - 1}{sin^{2}A}\right)} = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow  \dfrac{\left(\dfrac{-2cos\:A}{sin^{2}A}\right)}{\left(\dfrac{sin^{2}A - 1}{sin^{2}A}\right)} = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow \left(\dfrac{-2cos\:A}{\cancel{sin^{2}A}}\right) \times \left(\dfrac{\cancel{sin^{2}A}}{sin^{2}A - 1}\right) = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow \left(\dfrac{-2cos\:A}{1}\right) \times \left(\dfrac{1}{sin^{2}A - 1}\right) = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow \left(\dfrac{-2cos\:A}{sin^{2}A - 1}\right) = \dfrac{K}{cos\:A}}

\\

\sf{\Rightarrow \left(\dfrac{-2cos\:A}{sin^{2}A - 1}\right) \times cos\:A = K}

\\

\sf{\Rightarrow \left(\dfrac{-2cos^{2}A}{sin^{2}A - 1}\right) = K}

\\

\purple{\sf{\therefore K = \left(\dfrac{-2cos^{2}A}{sin^{2}A - 1}\right)}}

Hence ,the value of "k" is \sf{\left(\dfrac{-2cos^{2}A}{sin^{2}A - 1}\right)}

» Additional information :

  • sin(a + b) = sinAcosB + cosAsinB

  • sin(a - b) = sinAcosB - cosAsinB

  • cos(a + b) = cosAcosB - sinAsinB

  • cos(a - b) = cosAcosB + sinAsinB
Answered by Anonymous
3

GIVEN:-

 \frac{ \cot A}{1 +  \cosec A} -  \frac{ \cot A}{1 -  \cosec A} =  \frac{k}{ \cos A}

FIND:-

k = ?

SOLUTION:-

L.H.S

\frac{ \cot A}{1 +  \cosec A} -  \frac{ \cot A}{1 -  \cosec A}

now we take common:-

\cot A (\frac{1} {1 +  \cosec A} -  \frac{ 1}{1 -  \cosec A} )

\cot A (\frac{1 -   \cosec A  - 1 -   \cosec A}  { (1  +  \cosec A) (1  +  \cosec A)})

\cot A (\frac{ \cancel1 -   \cosec A \cancel{   - 1} -   \cosec A}  { (1  +  \cosec A) (1  +  \cosec A)})

we know that:-

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

so,

\cot A (\frac{ - 2  \cosec A }  {  {1}^{2}   -   \cosec{}^{2}  A) }) = \cot A (\frac{ - 2  \cosec A }  {  1   -   \cosec{}^{2}  A })......(i)

now, we know that

1 + \cot {}^{2}   \theta =  \cosec{}^{2}  \theta \\ 1   -  \cosec{}^{2}  \theta =   - \cot {}^{2}   \theta

so,

 1   -  \cosec{}^{2} A =   - \cot {}^{2}   A

put this value in eq(i) we get

 \cot A (\frac{ - 2  \cosec A }  {    - \cot {}^{2}   A}) =  \cancel{  \cot A} (\frac{  \cancel - 2  \cosec A }  {    \cancel{  - \cot  A}  \cancel- \cot  A})......(ii)

now,

 \cosec A =    \frac{1}{ \sin A }  \\   \cot  A  =  \frac{ \cos A  }{ \sin A}

put these values in eq(ii)

 = 2 \times     \frac{ \frac{1}{\sin A} }{ \frac{\cos A }{ \sin A} }

 =  \frac{2}{ \cancel{ \cos A}}  =  \frac{k}{ \cancel{ \cos A} }

 =  > k = 2

 \boxed{ so \: answer \: is \: k = 2}

Similar questions