Math, asked by 1Dhananjay42, 1 year ago

please solve the problem.

Attachments:

Answers

Answered by siddhartharao77
12

Given: 25^{x - 1} = 5^{2x - 1} - 100

=> 25^{x - 1} - 5^{2x - 1} = -100

=> (5^2)^{x - 1} - 5^{2x - 1} = -100

=> 5^{2x - 2} - 5^{2x - 1} = -100

=> 5^{2x} * 5^{-2} - 5^{2x} . 5^{-1} = -100

=> 5^{2x}(5^{-2} - 5^{-1}) = -100

=> 5^{2x} (\frac{1}{5^2} - \frac{1}{5}) = -100

=> 5^{2x}(\frac{1}{25} - \frac{1}{5}) = -100

=> 5^{2x}(\frac{-4}{25}) = -100

=> 5^{2x} = \frac{-100}{\frac{-4}{25} }

=> 5^{2x} = \frac{2500}{4}

=> 5^{2x} = 625

=> 5^{2x} = 5^4

=> 2x = 4

=> \boxed{x = 2}



Hope this helps!


Answered by BrainlyQueen01
29
Hi there !

_________________________

Given :

25 {}^{x - 1}  = 5 {}^{2x - 1}  - 100

Solution :

25 {}^{x - 1}   -  5 {}^{2x - 1}   =  -  100 \\  \\( 5 {}^{2} ) {}^{x - 1}  - 5{}^{2x - 1}   =  - 100 \\  \\ 5{}^{2x - 2}   - 5{}^{2x - 1}   =  - 100 \\  \\ 5 {}^{2x}  \times 5 {}^{ - 2}  - 5^{2x}   \times 5 {}^{ - 1}  = 100 \\  \\ 5^{2x}( 5 {}^{ - 2}  - 5 {}^{ - 1} ) =  - 100 \\  \\ 5^{2x}  ( \frac{1}{5 {}^{2}  }  -  \frac{1}{5} ) =  - 100 \\  \\ 5^{2x}  ( \frac{1}{25}  -  \frac{1}{5} ) =  - 100 \\  \\ 5^{2x}  ( \frac{1 - 5}{25} ) =  - 100 \\  \\ 5^{2x}  (  \frac{ - 4}{25} ) =  - 100 \\  \\ 5^{2x}   =  \frac{  \cancel- 100}{ \frac{ \cancel - 4}{25} }  \\  \\ 5^{2x}   =  \frac{ \cancel{2500} \:  {}^{625} }{ \cancel{  \:4 \: \: _1 } } \\  \\ 5 {}^{2x}  = 625 \\  \\ \cancel 5  \: {}^{2x}  = \cancel 5 \:  {}^{4}  \\  \\ 2x = 4 \\  \\ x =  \frac{ \cancel {4} \:  {}^{2} }{ \cancel 2}  \\  \\  \therefore  \boxed{\bold{x = 2}}
_________________________


Thanks for the question !
Similar questions