Math, asked by sayanikadutta28, 2 months ago

Please solve the problem, and don't give unnecessary answer.
Class 10 chapter Linear Inequation (ICSE)​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given inequality is

\rm :\longmapsto\:\dfrac{1}{2}  \leqslant x + 1 - \dfrac{x - 2}{2}  < 2\dfrac{1}{2}

\rm :\longmapsto\:\dfrac{1}{2}  \leqslant \dfrac{2x + 2 - (x - 2)}{2}  < \dfrac{5}{2}

\rm :\longmapsto\:\dfrac{1}{2}  \leqslant \dfrac{2x + 2 - x  + 2}{2}  < \dfrac{5}{2}

\rm :\longmapsto\:\dfrac{1}{2}  \leqslant \dfrac{x + 4}{2}  < \dfrac{5}{2}

On multiply by 2, each term we get

\rm :\longmapsto\:1 \leqslant x + 4 < 5

On Subtracting 4, from each term, we get

\rm :\longmapsto\:1 - 4 \leqslant x + 4 - 4 < 5 - 4

\rm :\longmapsto\: - 3\leqslant x  < 1

\bf\implies \:x \:  \in \: [ - 3, \: 1)

Additional Information :-

\boxed{ \rm{ x > y\rm \implies\: - x <  - y}}

\boxed{ \rm{ x  <  y\rm \implies\: - x  >   - y}}

\boxed{ \rm{ x  <   - y\rm \implies\: - x  >    y}}

\boxed{ \rm{ x   >    - y\rm \implies\: - x   <     y}}

\boxed{ \rm{ x \geqslant y\rm \implies\: - x \leqslant  - y}}

\boxed{ \rm{ x \leqslant y\rm \implies\: - x \geqslant  - y}}

\boxed{ \rm{ x \leqslant  - y\rm \implies\: - x \geqslant  y}}

Attachments:
Similar questions