Math, asked by harikrishna62, 5 months ago

Please solve the Problem given in the attachment. ​

Attachments:

Answers

Answered by MaIeficent
6

Step-by-step explanation:

Question:-

Find the value of K if :-

\rm ^{95} C_{4} +  \sum \limits _ {j = 1} ^ {5}   \: ^{100 - j}  C_{3} =  \:  ^{100} C_{K}

Formula used:-

  •  \boxed{\rm ^{n} C_{r} +  \: ^{n} C_{r + 1}  =  \: ^{n + 1} C_{r + 1}}

Solution:-

\rm ^{95} C_{4} +  \sum \limits _ {j = 1} ^ {5}   \: ^{100 - j}  C_{3} =  \:  ^{100} C_{K}

\rm  \implies^{95} C_{4} +  \big( \: ^{100 - 1} C_{3}  +  \: ^{100 - 2} C_{3}  +  \: ^{100 - 3} C_{3} + \: ^{100 - 4} C_{3} + \: ^{100 - 5} C_{3} \big) =  \: ^{100} C_{K}

\rm \implies ^{95} C_{4} +  \big( \: ^{99} C_{3}  +  \: ^{98} C_{3}  +  \: ^{97} C_{3} + \: ^{96} C_{3} + \: ^{95} C_{3} \big) =  \: ^{100} C_{K}

\rm \implies  \big( \: ^{95}  C_{4} +   \: ^{95} C_{3} \big)+  \big( \: ^{99} C_{3}  +  \: ^{98} C_{3}  +  \: ^{97} C_{3} + \: ^{96} C_{3}  \big) =  \: ^{100} C_{K}

\rm \implies  \big(   \: ^{95 + 1} C_{3 + 1} \big)+  \big( \: ^{99} C_{3}  +  \: ^{98} C_{3}  +  \: ^{97} C_{3} + \: ^{96} C_{3}  \big) =  \: ^{100} C_{K}

\rm \implies    \big( \: ^{96} C_{4}+  \: ^{96} C_{3} \big)  +  \: ^{97} C_{3}  +  \: ^{98} C_{3} + \: ^{99} C_{3}   =  \: ^{100} C_{K}

\rm \implies    \big( \: ^{97} C_{4}+  \: ^{97} C_{3} \big)  +  \: ^{98} C_{3} + \: ^{99} C_{3}   =  \: ^{100} C_{K}

\rm \implies    \big( \: ^{98} C_{4}+  \: ^{98} C_{3} \big)  +   \: ^{99} C_{3}   =  \: ^{100} C_{K}

\rm \implies    \big( \: ^{99} C_{4}+  \: ^{99} C_{3} \big)  =  \: ^{100} C_{K}

\rm \implies    \: ^{100} C_{4}=  \: ^{100} C_{K}

\rm \implies   4=  K

 \longrightarrow     \underline{ \boxed{\rm  \therefore \:  \:  K = 4}}

Similar questions