Math, asked by Anupamkumar4553, 9 months ago

please solve the problem
I will give 15 thanks plus follow​

Attachments:

Answers

Answered by AlluringNightingale
3

Answer :

x^2013 - 1/x^2012 = 0

Solution :

  • Given : x + 1/x = 2
  • To find : x^2013 - 1/x^2012 = ?

We have ;

=> x + 1/x = 2

=> (x² + 1)/x = 2

=> x² + 1 = 2x

=> x² - 2x + 1 = 0

=> (x - 1)² = 0

=> x - 1 = 0

=> x = 1

Now ,

=> x^2013 - 1/x^2012 = 1^2013 - (1/1)^2012

=> x^2013 - 1/x^2012 = 1 - 1

=> x^2013 - 1/x^2012 = 0

Hence ,

x^2013 - 1/x^2012 = 0

Answered by Rohith200422
4

Question:

If \:x +  \frac{1}{x}  = 2, \: then\: \:  {x}^{2013}  -  \frac{1}{ {x}^{2012} }  .

To find:

To \:find \:   {x}^{2013}  -  \frac{1}{ {x}^{2012} } .

Answer:

 \underline{  \sf \pink{\bf{  \: {x}^{2013}  -  \frac{1}{ {x}^{2012}  }  = 0}} \: }

Given:

 \star \: x +  \frac{1}{x}  = 2

Step-by-step explanation:

 \implies x +  \frac{1}{x}  = 2

 \implies  \frac{ {x}^{2} + 1 }{x}   = 2

 \implies  {x}^{2} + 1 = 2x

 \implies  {x}^{2}  - 2x + 1 = 0

Now \: factorisation,

Product :- 1 = ( -1 ) × ( -1 )

Sum :- -2 = ( -1 ) + ( -1 )

\implies  {x}^{2}  - x - x + 1 = 0

\implies x(x - 1) - 1(x - 1) = 0

\implies (x - 1)(x - 1) = 0

\implies  {(x - 1)}^{2}  = 0

\implies x - 1  = 0

\implies  \boxed{x  = 1}

 \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

Now to find the value of  {x}^{2013}  -  \frac{1}{ {x}^{2012} }

 Substitute \:the \:value\: of \:x,

\rightsquigarrow  {(1)}^{2013}  -  \frac{1}{ {(1)}^{2012} }

\rightsquigarrow 1 -  \frac{1}{1}

\rightsquigarrow 1 - 1

\rightsquigarrow   \boxed{ {x}^{2013}  -  \frac{1}{ {x}^{2012} }  = 0}

\therefore  \underline{ \bf{  \: {x}^{2013}  -  \frac{1}{ {x}^{2012}  }  = 0} \: }

Similar questions