Math, asked by llXxDramaticKingxXll, 1 month ago

Please solve the problem in above of question​

Attachments:

Answers

Answered by Anonymous
4

Given Equation

 \tt \to \:   \bigg( {x}^{3}  -  \dfrac{1}{ {x}^{3} }  \bigg) \bigg( {x}^{3}   +  \dfrac{1}{ {x}^{3} }  \bigg)\bigg( {x}^{6}   +   \dfrac{1}{ {x}^{6} }  \bigg)

To Prove

 \to \tt\bigg( {x}^{12}  -  \dfrac{1}{ {x}^{12} }  \bigg)

Now Take

\tt \to \:   \bigg( {x}^{3}  -  \dfrac{1}{ {x}^{3} }  \bigg) \bigg( {x}^{3}   +  \dfrac{1}{ {x}^{3} }  \bigg)\bigg( {x}^{6}   +   \dfrac{1}{ {x}^{6} }  \bigg)

By using this identity

 \tt \to \:(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

we get

\tt \to \:   \bigg(  \{{x}^{3}  \} {}^{2}  -  \dfrac{1}{  \{{x}^{3} \}^{2}  }  \bigg)  \bigg( {x}^{6}   +   \dfrac{1}{ {x}^{6} }  \bigg)

\tt \to \:   \bigg(  {x}^{3 \times 2}    -  \dfrac{1}{  {x}^{3 \times 2}   }  \bigg)  \bigg( {x}^{6}   +   \dfrac{1}{ {x}^{6} }  \bigg)

\tt \to \:   \bigg(  {x}^{6}    -  \dfrac{1}{  {x}^{6}   }  \bigg)  \bigg( {x}^{6}   +   \dfrac{1}{ {x}^{6} }  \bigg)

Again using same identity

\tt \to \:(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

we get

\tt \to \:   \bigg(  \{{x}^{6}  \} {}^{2}  -  \dfrac{1}{  \{{x}^{6} \}^{2}  }  \bigg)

\tt \to \:   \bigg(  {x}^{6\times 2}    -  \dfrac{1}{  {x}^{6 \times 2}   }  \bigg)

\tt \to \:   \bigg(  {x}^{ 12}    -  \dfrac{1}{  {x}^{12}   }  \bigg)

LHS = RHS

Hence Proved

Answered by Itzlearner67
1

Answer:

bhaiya me brainly leave kar rhi hu ye account delete karke dusri account banaungi Itzcloudy02 name se aap muje follow krna ok me bhi aapko follow kr lugi

Similar questions