Math, asked by wajidaanjum, 1 month ago

please solve the problem
please​

Attachments:

Answers

Answered by Anushkas7040
2

Answer:

a) \frac{1}{8}

b)\frac{1}{1728}

Step-by-step explanation:

5^{x} =125^{-1}\\=>5^{x} ={(5^{3})}^{-1} \\=>5^{x} =5^{-3}\\Since,\ bases \ are \ same\ \\Therefore,\ equating\ the \ powers\\x=-3

a)

2^{x}\\=>2^{-3}\\\\=>\frac{1}{2^{3} }\\\\=>\frac{1}{8}

b)

3^{x}\times 4^{x}\\=>(3^{-3}) (4^{-3} ) \\=>{(3\times 4) }^{-3}  \\=>12^{-3} \\\\=>\frac{1}{12^{3} } \\\\=>\frac{1}{1728}

Answered by TrustedAnswerer19
71

Answer:

Given,

  \:  \: \:  \:  \:  {5}^{x}  =  {125}^{ - 1}  \\ \implies \:  {5}^{x}  =(  { {5}^{3} })^{ - 1}  \\ \implies \:  {5}^{x}  =  {5}^{ - 3}    \\ \therefore \:  \: x =  - 3

 \sf  \: cause \:  \\ \: if \:   \:  \:  \:  \:  \:  \:  \:  {a}^{m}  =  {a}^{n}  \:  \:  \:  \:  \: then \:  \:  \:  \:  \:  \: m = n \:

Now,

a)

 {2}^{x}  \\  =  {2}^{ - 3}  \\  =(  { {2}^{3} })^{ - 1}  \\  =  {8}^{ - 1}  \\  =  \frac{1}{8}

b)

 {3}^{x}  \times  {4}^{x}  \\  =  {3}^{ - 3}  \times  {4}^{ - 3}  \\  = ( { {3}^{3} })^{ - 1} \times  ( { {4}^{3} })^{ - 1}  \\  =  {27}^{ - 1}  \times  {64}^{ - 1}  \\  =  \frac{1}{27}  \times  \frac{1}{64}  \\  =  \frac{1}{1728}

Similar questions