please solve the problem TRIGONOMETRY
Answers
Answer:
I am just 8th bro I don't about this and they haven't thought me this
Step-by-step explanation:
SORRY FOR THE INCONVENIENCE
Step-by-step explanation:
Given,
sec∅+tan∅ = m → (1)
W.K.T,
______________
Sec²∅-tan²∅ = 1
______________
=> (sec∅+tan∅)(sec∅-tan∅) = 1
[Since (a²-b²)=(a+b)(a-b) formula]
=> m(sec∅-tan∅) = 1
sec∅-tan∅ = 1/m → (2)
By solving equations (1) & (2),
Sec∅+tan∅ = m
Sec∅-tan∅ = 1/m
______________
2Sec∅ = m+(1/m)
2Sec∅ = (m²+1)/m
Sec∅ = [(m²+1)/m]/2
Sec∅ = (m²+1)/m × ½
:. Sec∅ = (m²+1)/2m
Substitute 'Sec∅' value in equation (1),
Sec∅+tan∅ = m
(m²+1)/2m + tan∅ = m
tan∅ = m - (m²+1)/2m
tan∅ = [2m²-(m²+1)]/2m
tan∅ = (2m²-m²-1)/2m
:. tan∅ = (m²-1)/2m
Now,
Tan∅ = sin∅/cos∅
Sin∅/Cos∅ = (m²-1)/2m
Sin∅.(1/Cos∅) = (m²-1)/2m
Sin∅.Sec∅ = (m²-1)/2m
Sin∅.(m²+1)/2m = (m²-1)/2m
Sin∅ = [(m²-1)/2m]/[(m²+1)2m]
Sin∅ = (m²-1)/2m × 2m/(m²+1)
Sin∅ = (m²-1)/(m²+1)
(Since both '2m' are cancel)
:. Sin∅ = (m²-1)/(m²+1).
I hope it helps you!!!