Math, asked by rohin111bhattacharya, 10 months ago

please solve the problem wrong answer will be reported ​

Attachments:

Answers

Answered by mustafidisha2005
1

Answer:

I can solved this problem . to know this answer please see this following steps

Attachments:
Answered by mysticd
1

 Given \: \theta + \alpha = 90\degree

 \implies  \alpha = 90\degree - \theta \: --(1)

 i ) \frac{tan \theta tan\alpha + tan\theta cot \alpha }{ sin \theta sec \alpha } - \frac{sin^{2} \alpha }{cos^{2} \theta }

 =  \frac{tan \theta tan ( 90 - \theta ) + tan\theta cot (90 - \theta) }{ sin \theta sec (90 - \theta) } - \frac{sin^{2} (90- \theta) }{cos^{2} \theta }

 =  \frac{tan \theta cot  \theta  + tan\theta\times  tan \theta}{ sin \theta cosec  \theta} - \frac{cos^{2}  \theta }{cos^{2} \theta }

 =  \frac{1 + tan^{2}\theta}{ sin \theta \times \frac{1}{sin  \theta}} - 1

 =  1 + tan^{2} \theta - 1

 = tan^{2} \theta \: --(2)

 LHS = \red{ \sqrt{ \Big(\frac{tan \theta tan\alpha + tan\theta cot \alpha }{ sin \theta sec \alpha } - \frac{sin^{2} \alpha }{cos^{2} \theta }}\Big)}\\= \sqrt{tan^{2} \theta } \: [From \: (1) ] \\\green {= tan\theta} \\= RHS

•••♪

Similar questions