Math, asked by thanmaythanu8, 3 months ago

please solve the qstn ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{1}{ \tan(x) \tan( \frac{\pi}{3} - x )  \tan( \frac{\pi}{3} + x )  }dx \\

 =  \int \frac{ \cos(x)  \cos( \frac{\pi}{3} - x ) \cos( \frac{\pi}{3}  + x)  }{ \sin(x)  \sin( \frac{\pi}{3}  - x ) \sin( \frac{\pi}{3}  + x)  } dx \\

  =  \int \frac{ \cos(x) \cos(x)  }{ \sqrt{3} \sin(x)  \sin(x)  }dx \\

 =  \frac{1}{ \sqrt{3} }  \int \cot^{2} (x) dx \\

 =  \frac{1}{ \sqrt{3} }  \int (\cosec ^{2} (x)  - 1)dx \\

 =  \frac{1}{ \sqrt{3} }  \int \cosec^{2} (x)  -  \frac{1}{ \sqrt{3} }  \int \: dx \\

 =  \frac{1}{ \sqrt{3} } ( -  \cot(x) ) -  \frac{1}{ \sqrt{3} } x + c \\

 =  -  \frac{1}{ \sqrt{3} } ( \cot(x)   + x) + c \\

Similar questions