Math, asked by stuti0041, 2 months ago

please solve the que​

Attachments:

Answers

Answered by BrainlyTornado
5

QUESTION:

Prove that:

\sf \dfrac{{ 3}^{ - 3} \times {6}^{2} \times \sqrt{98 }}{ {5}^{2} \times \sqrt[3]{ \dfrac{1}{25}} \times {15}^{ - 4/ 3} \times {3}^{1 /3}} = 28 \sqrt{2}

\\ \\

GIVEN AND TO PROVE:

\sf \dfrac{{ 3}^{ - 3} \times {6}^{2} \times \sqrt{98 }}{ {5}^{2} \times \sqrt[3]{ \dfrac{1}{25}} \times {15}^{ - 4/ 3} \times {3}^{1 /3}} = 28 \sqrt{2}

\\ \\

EXPLANATION:

 \sf Let \ { 3}^{ - 3} \times {6}^{2} \times \sqrt{98 } = x\\

 \sf Let \ {5}^{2} \times \sqrt[3]{\dfrac{1}{25}} \times {15}^{ - 4/ 3} \times {3}^{1 /3}=y\\

 \sf Then \ \dfrac{{ 3}^{ - 3} \times {6}^{2} \times \sqrt{98 }}{ {5}^{2} \times \sqrt[3]{\dfrac{1}{25}} \times {15}^{ - 4/ 3} \times {3}^{1 /3}} =  \dfrac{x}{y}\\

 \sf  \leadsto  x = \dfrac{1}{ 3^ 3} \times {6}^{2} \times \sqrt{2 \times 49 }\\

\sf  \leadsto  x = \dfrac{1}{ 9 \times 3} \times 36 \times7 \sqrt{2}\\

\sf  \leadsto  x = \dfrac{1}{ 3} \times 4\times7 \sqrt{2}\\

\sf  \leadsto  x = \dfrac{28}{ 3} \sqrt{2}\\

 \sf  \leadsto y = {5}^{2} \times \sqrt[3]{ \dfrac{1}{25}}  \times \sqrt[3]{ \dfrac{1}{ {15}^{4} }} \times\sqrt[3]{ 3}\\

 \sf  \leadsto y = \sqrt[3]{ (25) {}^{3}} \times \sqrt[3]{ \dfrac{1}{25}}  \times \sqrt[3]{ \dfrac{1}{ {15}^{4} }} \times\sqrt[3]{ 3}\\

 \sf  \leadsto y = \sqrt[3]{ \dfrac{25 \times 25 \times 25 \times 3}{25 \times 15 \times 15 \times 15 \times 15}} \\

 \sf  \leadsto y = \sqrt[3]{ \dfrac{25 \times 25}{5 \times 5 \times 3 \times 15 \times 15}} \\

 \sf  \leadsto y = \sqrt[3]{ \dfrac{25 }{ 3 \times 5 \times 3 \times 5 \times 3}} \\

 \sf  \leadsto y = \sqrt[3]{ \dfrac{1 }{ 3 \times 3 \times 3}} \\

 \sf  \leadsto y =  \dfrac{1 }{ 3}\\

 \sf  \sf  \leadsto   \dfrac{x}{y} =  \dfrac{\dfrac{28 \sqrt{2} }{ 3}}  {\dfrac{1 }{ 3}}\\

 \sf  \sf  \leadsto   \dfrac{x}{y} = 28 \sqrt{2}\\

 \sf \dfrac{{ 3}^{ - 3} \times {6}^{2} \times \sqrt{98 }}{ {5}^{2} \times \sqrt[3]{ \dfrac{1}{25}} \times {15}^{ - 4/ 3} \times {3}^{1 /3}} = 28 \sqrt{2}\\

HENCE PROVED.

Answered by Teluguwala
5

 \huge \boxed{{\sf \color{deeppink}\underline{Happy \: Learning \: ツ}}}

Attachments:
Similar questions