Math, asked by Mehebooba, 11 months ago

please solve the question

Attachments:

Answers

Answered by konrad509
0

\displaystyle\\\lim_{x\to a}\dfrac{x\sin a -a \sin x}{x-a}=\\\\\lim_{x\to a}\dfrac{(x\sin a -a \sin x)'}{(x-a)'}=\\\\\lim_{x\to a}\dfrac{\sin a -a\cos x}{1}=\\\\\lim_{x\to a}(\sin a -a\cos x)=\\\\\sin a-a \cos a

Answered by Anonymous
2

Answer:

\large\bold\red{ \sin(a)  - a  \cos(a)}

Step-by-step explanation:

Given,

\lim_{x\to \: a} \frac{x \sin(a) - a \sin(x)  }{x - a} </p><p>

If we put x = a, the values comes 0/0.

now,

since it is in the form of 0/0.

therefore,

we can apply L - Hospitals Rule here.

  • In L - Hospitals Rule, we differentiate both Numerator and Denominator respectively.

Thus,

we get,

\lim_{x\to \: a} \frac{ \sin(a) \frac{d}{dx}  x - a \frac{d}{dx}  \sin(x) }{ \frac{d}{dx}x -  \frac{d}{dx}  a}  \\  \\  = \lim_{x\to \: a} \frac{ \sin(a)  - a \cos(x) }{1 - 0}  \:  \:   \\  \\  =  \bold{ \sin(a)  - a  \cos(a)} </p><p></p><p>

Similar questions