Please solve the question
Answers
Step-by-step explanation:
HOPE THIS WILL HELP YOU.... PLZ SUPPORT ...
Answer:
0.
Step-by-step explanation:
Given,
x = [ √( m + n ) + √( m - n ) ] / [ √( m + n ) - √( m - n ) ]
= > x / 1 = [ √( m + n ) + √( m - n ) ] / [ √( m + n ) - √( m - n ) ]
Using componendo & dividendo :
= > ( x + 1 ) / ( x - 1 ) = [ { √( m + n ) + √( m - n
) } + { √( m + n ) - √( m - n ) } ] / [ { √( m + n ) + ( m - n ) } - { √( m + n ) - √( m - n ) } ]
= > ( x + 1 ) / ( x - 1 ) = [ 2√( m + n ) ] / [ 2√( m - n ) ]
= > ( x + 1 ) / ( x - 1 ) = √( m + n ) / √( m - n )
Square on both sides :
= > ( x + 1 )^2 / ( x - 1 )^2 = ( m + n ) / ( m - n )
= > ( m - n )( x + 1 )^2 = ( m + n )( x - 1 )^2
= > ( m - n )( x^2 + 1 + 2x ) = ( m + n )( x^2 + 1 - 2x )
= > mx^2 + m + 2mx - nx^2 - n - 2nx = mx^2 + m - 2mx + nx^2 + n - 2nx
= > 2mx - nx^2 - n = - 2mx + nx^2 + n
= > 2nx + 2nx - nx^2 - nx^2 - n - n = 0
= > 4nx - 2nx^2 - 2n = 0
= > 2nx^2 - 4mx + 2n = 0
= > nx^2 - 2mx + n = 0
Hence the numeric value of given expression is 0.