Math, asked by atec7484, 9 months ago

Please solve the question..

Attachments:

Answers

Answered by BrainlyPopularman
26

GIVEN :

 \bf \tan(A)  =  \sqrt{2}  - 1

TO FIND :

 \bf \dfrac{\tan(A)}{1+\tan^2(A)} = ?

SOLUTION :

 \bf \:  \:  =\:  \: \dfrac{\tan(A)}{1+\tan^2(A)}

• Put the values –

 \bf \:  \:  =\:  \: \dfrac{( \sqrt{2} - 1)}{1+( \sqrt{2} - 1)^2}

• Using identity –

 \bf  \:  \: \to \:  \: {(a - b)}^{2} = {a}^{2} +  {b}^{2} - 2ab

• So that –

 \bf \:  \:  =\:\: \dfrac{( \sqrt{2} - 1)}{1+( \sqrt{2}) ^{2} +  (1)^2 - 2 \sqrt{2} }

 \bf \:  \:  =\:\: \dfrac{( \sqrt{2} - 1)}{1+2+1- 2 \sqrt{2} }

 \bf \:  \:  =\:\: \dfrac{( \sqrt{2} - 1)}{2+2- 2 \sqrt{2} }

 \bf \:  \:  =\:\: \dfrac{( \sqrt{2} - 1)}{4- 2 \sqrt{2} }

 \bf \:  \:  =\:\: \dfrac{ \cancel{( \sqrt{2} - 1)}}{2 \sqrt{2} \cancel{( \sqrt{2}  - 1)}}

 \bf \:  \:  =\:\: \dfrac{1}{2 \sqrt{2}}

▪︎ Hence –

 \bf  \implies \large{ \boxed{ \bf \dfrac{\tan(A)}{1+\tan^2(A)}=\:\: \dfrac{1}{2 \sqrt{2}}}}

Similar questions