Math, asked by Nirman47, 6 months ago

please solve the question
__/|\__​

Attachments:

Answers

Answered by Anonymous
3

Solution:-

 \rm \implies \:  \dfrac{ {x}^{2} }{ {x}^{2}  + 1}  +  \dfrac{ {x}^{2}  - 5}{ {x}^{2}  - 6}  = 2

By taking lcm we get

 \rm \implies \:  \dfrac{ {x}^{2}( {x}^{2}   - 6) +  ({x}^{2} - 5) ( {x}^{2}  + 1)}{ ({x}^{2}  + 1)( {x}^{2} - 6) }  = 2

 \rm \implies \dfrac{ {x}^{4} - 6 {x}^{2} +  {x}^{4}  - 5 {x}^{2}   +  {x}^{2} - 5  } { {x}^{4}  - 6 {x}^{2}  +  {x}^{2} - 6 }  = 2

 \rm \implies \:  \dfrac{2 {x}^{4}  - 10{x}^{2}  - 5}{ {x}^{4}  - 5 {x}^{2} - 6 }  = 2

 \rm \implies \: 2 {x}^{4}  - 10 {x}^{2}  - 5 = 2( {x}^{4}  - 5 {x}^{2}  - 6)

  \rm \implies \: 2 {x}^{4}  - 10 {x}^{2}  - 5 = 2 {x}^{4}  - 10 {x}^{2}  - 12

\rm \implies \: \cancel{ 2 {x}^{4}}  -  \cancel{10 {x}^{2}}- 5 =  \cancel{2 {x}^{4} } -  \cancel{10 {x}^{2} } - 12

 \rm  \implies \: 0 - 5 = 12

This equation is not defined because tha value of x is not coming

An equation for a straight line is called a linear equation. The general representation of the straight-line equation is y=mx+b, where m is the slope of the line and b is the y-intercept.

Linear equations are those equations that are of the first order. These equations are defined for lines in the coordinate system. 

Similar questions