Math, asked by wugwfhvw213hvd, 3 months ago

Please solve the question

Attachments:

Answers

Answered by varadad25
4

Question:

If \displaystyle{\sf\:x\:=\:7\:+\:4\:\sqrt{3}}, find the value of \displaystyle{\sf\:x^3\:+\:\dfrac{1}{x^3}}

Answer:

\displaystyle{\boxed{\red{\sf\:x^3\:+\:\dfrac{1}{x^3}\:=\:2702}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:x\:=\:7\:+\:4\:\sqrt{3}}

We have to find the value of

\displaystyle{\sf\:x^3\:+\:\dfrac{1}{x^3}}

Now,

\displaystyle{\sf\:x\:=\:7\:+\:4\:\sqrt{3}}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{1}{7\:+\:4\:\sqrt{3}}}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{1}{7\:+\:4\:\sqrt{3}}\:\times\:\dfrac{7\:-\:4\:\sqrt{3}}{7\:-\:4\:\sqrt{3}}\:\:\qquad\:\dots\:[\:Rationalising\:the\:denominator\:]}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{7\:-\:4\:\sqrt{3}}{(\:7\:)^2\:-\:(\:4\:\sqrt{3}\:)^2}\:\quad\:\dots\:[\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:=\:a^2\:-\:b^2\:]}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{7\:-\:4\:\sqrt{3}}{49\:-\:16\:\times\:3}}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{7\:-\:4\:\sqrt{3}}{49\:-\:48}}

\displaystyle{\implies\sf\:\dfrac{1}{x}\:=\:\dfrac{7\:-\:4\:\sqrt{3}}{1}}

\displaystyle{\implies\boxed{\pink{\sf\:\dfrac{1}{x}\:=\:7\:-\:4\:\sqrt{3}}}}

Now,

\displaystyle{\sf\:x\:+\:\dfrac{1}{x}\:=\:7\:+\:4\:\sqrt{3}\:+\:7\:-\:4\:\sqrt{3}}

\displaystyle{\implies\sf\:x\:+\:\dfrac{1}{x}\:=\:7\:+\:7\:+\:\cancel{4\:\sqrt{3}}\:-\:\cancel{4\:\sqrt{3}}}

\displaystyle{\implies\sf\:x\:+\:\dfrac{1}{x}\:=\:7\:+\:7}

\displaystyle{\implies\boxed{\purple{\sf\:x\:+\:\dfrac{1}{x}\:=\:14}}}

We have to find the value of

\displaystyle{\sf\:x^3\:+\:\dfrac{1}{x^3}}

\displaystyle{\sf\:x\:+\:\dfrac{1}{x}\:=\:14}

\displaystyle{\implies\sf\:\left(\:x\:+\:\dfrac{1}{x}\:\right)^3\:=\:(\:14\:)^3\:\quad\:\dots\:[\:Cubing\:both\:sides\:]}

\displaystyle{\implies\sf\:x^3\:+\:3\:\times\:x^{\cancel{2}}\:\times\:\dfrac{1}{\cancel{x}}\:+\:3\:\times\:x\:\times\:\left(\:\dfrac{1}{x}\:\right)^2\:+\:\left(\:\dfrac{1}{x}\:\right)^3\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:3x\:+\:3\:\times\:\cancel{x}\:\times\:\dfrac{1}{x^{\cancel{2}}}\:+\:\dfrac{1}{x^3}\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:3x\:+\:\dfrac{3}{x}\:+\:\dfrac{1}{x^3}\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:\dfrac{1}{x^3}\:+\:3\:\left(\:x\:+\:\dfrac{1}{x}\:\right)\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:\dfrac{1}{x^3}\:+\:3\:\times\:14\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:\dfrac{1}{x^3}\:+\:42\:=\:2744}

\displaystyle{\implies\sf\:x^3\:+\:\dfrac{1}{x^3}\:=\:2744\:-\:42}

\displaystyle{\therefore\:\underline{\boxed{\red{\sf\:x^3\:+\:\dfrac{1}{x^3}\:=\:2702}}}}

Similar questions