Math, asked by nitishmundel123, 1 month ago

Please solve the question​

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Given- }}

\rm :\longmapsto\:0 < x < \dfrac{\pi}{4}

and

\rm :\longmapsto\:cosx  + sinx =  \dfrac{5}{4}

and

\rm :\longmapsto\:cosx  -  sinx =  \dfrac{ \sqrt{k} }{m}

where, k and m are relatively primes.

\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{the \: value \: of \: k + m}\end{cases}\end{gathered}\end{gathered}

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:cosx  + sinx =  \dfrac{5}{4}

We know that,

\red{ \boxed{ \rm{ \:  {(x + y)}^{2} +  {(x - y)}^{2} = 2( {x}^{2} +  {y}^{2})}}}

So, Replace x by sinx and y by cosx, we get,

\rm :\longmapsto\: {(cosx + sinx)}^{2} +  {(cosx - sinx)}^{2} = 2( {sin}^{2}x +  {cos}^{2}x)

On substituting the value of sinx + cosx, we get

\rm :\longmapsto\:\dfrac{25}{16} +  {(cosx - sinx)}^{2} = 2 \times 1

\rm :\longmapsto\:\dfrac{25}{16} +  {(cosx - sinx)}^{2} = 2

\rm :\longmapsto\:  {(cosx - sinx)}^{2} = 2 - \dfrac{25}{16}

\rm :\longmapsto\:  {(cosx - sinx)}^{2} = \dfrac{32 - 25}{16}

\rm :\longmapsto\:  {(cosx - sinx)}^{2} = \dfrac{7}{16}

\rm :\longmapsto\:  {cosx - sinx}=  \pm \: \dfrac{ \sqrt{7} }{4} -  -  - (1)

But it is given that,

\rm :\longmapsto\:0 < x < \dfrac{\pi}{4}

and we know that,

\rm :\longmapsto\:0 < x < \dfrac{\pi}{4}  \:  \implies \: cosx > sinx

So, equation (1) reduces to

\rm :\longmapsto\:  {cosx - sinx}=  \: \dfrac{ \sqrt{7} }{4}

But it is given that,

\rm :\longmapsto\:cosx  -  sinx =  \dfrac{ \sqrt{k} }{m}

So, On comparing, we get

\rm :\longmapsto\:k = 7 \:  \:  \: and \:  \:  \: m = 4

And k and m are relatively prime as HCF (4, 7) = 1

Hence,

\bf\implies \:k + m = 7 + 4 = 11

Additional Information :-

\red{ \boxed{ \rm{ \: sin(A + B) = sinAcosB + sinBcosA}}}

\red{ \boxed{ \rm{ \: sin(A  -  B) = sinAcosB  -  sinBcosA}}}

\red{ \boxed{ \rm{ \: cos(A + B) = cosAcosB  -  sinAsinB}}}

\red{ \boxed{ \rm{ \: cos(A  -  B) = cosAcosB   +  sinAsinB}}}

\red{ \boxed{ \rm{ \: tan(A + B) =  \frac{tanA + tanB}{1 - tanAtanB}}}}

\red{ \boxed{ \rm{ \: tan(A  -  B) =  \frac{tanA  -  tanB}{1 + tanAtanB}}}}

Similar questions