Math, asked by suman682, 1 year ago

please solve the question

Attachments:

Answers

Answered by gegfhfhbduwobshakdbs
4

 \large \tt AHOY!! \:

 \sf given :  -  \frac{4 +  \sqrt{5} }{4 -  \sqrt{5} }  +  \frac{4 -  \sqrt{5} }{4 +  \sqrt{5} }  \sf \small \\  \\   \sf \small =  \frac{(4 +  \sqrt{5})(4 +  \sqrt{5}  )}{(4 -  \sqrt{5} )(4 +  \sqrt{5}) }  +  \frac{(4 -  \sqrt{5} )(4 -  \sqrt{5} )}{(4 -  \sqrt{5)}(4 +  \sqrt{5} ) }  \\  \\  \sf  =  \frac{ {(4 +  \sqrt{5}) }^{2} }{ {(4)}^{2}  -  {( \sqrt{5}) }^{2} }  +  \frac{ {(4 -  \sqrt{5}) }^{2} }{ {(4)}^{2}  -  {( \sqrt{5}) }^{2} }  \\  \\  \sf =  \frac{ {(4)}^{2}  + 2(4)( \sqrt{5}) +  {( \sqrt{5}) }^{2}  }{16 - 5}  +   \\    \\  \sf\frac{ {(4)}^{2} - 2(4)( \sqrt{5} ) +  {( \sqrt{5}) }^{2}  }{16 - 5}  \\  \\  \sf =  \frac{16 + 8 \sqrt{5}  + 5}{11}  +  \frac{16 - 8 \sqrt{5}  + 5}{11}  \\  \\  =  \frac{21 + \cancel{ 8 \sqrt{5} } + 21 -  \cancel{8 \sqrt{5} }}{11}  \\  \\  \sf =  \frac{42}{11}


 \large \tt HOPE  \: THIS  \: HELPS!!
Answered by Anonymous
17

...........................................

Similar questions