Math, asked by riji31, 9 months ago

please solve the question correctly correctly.......DON'T SPAM......​

Attachments:

Answers

Answered by sandy1816
1

Answer:

your answer attached in the photo

Attachments:
Answered by Anonymous
7

Question:

if 3 cosα -4sinα = 5

so prove that 3 sinα + 4 cos α = 0

Trignometric Formulas :

  • sinA cos B + sinB cosA = sin( A+ B)
  • sinAcosB - sinBcosA =sin(A-B)
  • cosAcosB -sinAsinB=cos( A+B)
  • cosAcosB+sinAsinB =cos(A-B)
  • sin²A + cos²A = 1
  • sec²A - tan²A = 1
  • cosec²A - cot²A = 1
  • sin2A = 2 sinA cosA
  • cos2A = cos²A - sin²A
  • tan2A = 2 tanA / (1 - tan²A)

Solution :

Given : 3 cosα -4sinα = 5

Now , divide both sides by 5

 \implies \:  \frac{3}{5}  \cos( \alpha )  -  \frac{4}{5}  \sin( \alpha )  = 1

let sin x = \frac{3}{5}

⇒cosx = \frac{4}{5}

sinx \: cos \alpha  - cosx \: sin \alpha  = 1

⇒sin(x-α) = 1

we know that sin²A + cos²A = 1

 \implies \:   \cos(x -  \alpha )  =  \sqrt{1 -  \sin {}^{2} (x -  \alpha ) }

⇒cos(x-α) = 0

________________________

we have to prove :3 sinα + 4 cos α = 0

LHS :

3 sinα + 4 cos α

 = 5( \frac{3}{5}  \sin \alpha  -  \frac{4}{5}  \cos \alpha )

 = 5(sinx \: sin  \alpha   - cosx \:cos \alpha )

 =  - 5(cosx \: cos \alpha  - sinx \: sin  \alpha )

 =  - 5 \times cos(x -  \alpha )

put the value of cos (x-α)

 = 0

RHS = 0

⇒LHS = RHS

\huge{\bold{ Hence \: Proved }}

Similar questions