please solve the question correctly correctly.......DON'T SPAM......
Attachments:
Answers
Answered by
1
Answer:
your answer attached in the photo
Attachments:
Answered by
7
Question:
if 3 cosα -4sinα = 5
so prove that 3 sinα + 4 cos α = 0
Trignometric Formulas :
- sinA cos B + sinB cosA = sin( A+ B)
- sinAcosB - sinBcosA =sin(A-B)
- cosAcosB -sinAsinB=cos( A+B)
- cosAcosB+sinAsinB =cos(A-B)
- sin²A + cos²A = 1
- sec²A - tan²A = 1
- cosec²A - cot²A = 1
- sin2A = 2 sinA cosA
- cos2A = cos²A - sin²A
- tan2A = 2 tanA / (1 - tan²A)
Solution :
Given : 3 cosα -4sinα = 5
Now , divide both sides by 5
let sin x =
⇒cosx =
⇒sin(x-α) = 1
we know that sin²A + cos²A = 1
⇒cos(x-α) = 0
________________________
we have to prove :3 sinα + 4 cos α = 0
LHS :
3 sinα + 4 cos α
put the value of cos (x-α)
RHS = 0
⇒LHS = RHS
Similar questions