Math, asked by riji31, 11 months ago

please solve the question correctly correctly.......DON'T SPAM......​

Attachments:

Answers

Answered by sandy1816
0

Answer:

your answer attached in the photo

Attachments:
Answered by Anonymous
19

Question :

To prove :

 \sqrt{ \frac{  \csc( \theta)  -  1 }{ \csc( \theta) + 1 }  }  =  \frac{1 -  \sin( \theta) }{ \cos(  \theta) }

Formulas related to Trigonometry:

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1
  4. sin2A = 2 sinA cosA
  5. cos2A = cos²A - sin²A
  6. tan2A = 2 tanA / (1 - tan²A)

Solution :

LHS

 =  \sqrt{ \frac{ \csc( \theta) - 1 }{ \csc( \theta)  + 1 } }

 =  \sqrt{ \frac{ \frac{1}{ \sin( \theta)  } - 1 }{ \frac{1}{ \sin( \theta)  }  + 1} }

 =   \sqrt{ \frac{1 -  \sin( \theta) }{1 +  \sin( \theta) } }

Now rationalise the denominator

 =  \sqrt{ \frac{1 -  \sin( \theta) }{1 +  \sin( \theta) } \times  \frac{1 -  \sin( \theta) }{1 - \sin( \theta) }  }

 =  \sqrt{ \frac{(1 -  \sin\theta)  {}^{2} }{1 -  \sin {}^{2}  \theta } }

we know that , sin²A + cos²A = 1

 =  \sqrt{ \frac{(1 - sin \theta \: ) {}^{2} }{ \cos {}^{2}  \theta } }

 =  \frac{1 -  \sin \theta }{ \cos \theta }

RHS

 =  \frac{1 - sin \theta}{cos \theta}

⇒LHS = RHS

\huge{\bold{ Hence \: Proved }}

Similar questions