Math, asked by guptaananya2005, 22 days ago

Please solve the question in attached file​

Attachments:

Answers

Answered by mathdude500
6

Given Question :-

If f(x) is a quadratic expression which is positive for all real values of x and g(x) = f(x) - f'(x) + f''(x), then for all real values of x,

(a) g(x) > 0

(b) g(x) < 0

(c) g(x) = 0

(d) g(x) < - 1

 \green{\large\underline{\sf{Solution-}}}

Given that,

  • f(x) is a quadratic expression which is positive for all real values of x.

Let assume that

\rm :\longmapsto\:f(x) =  {ax}^{2} + bx + c \: such \: that \: f(x) &gt; 0

\rm \implies\:\boxed{\tt{ a &gt; 0 \:  \: and \:  \:  {b}^{2} - 4ac &lt; 0 }}-  -  - (1)

Now,

\red{\rm :\longmapsto\:f'(x) = 2ax + b}

\red{\rm :\longmapsto\:f''(x) = 2a}

Now, Consider

\rm :\longmapsto\:g(x) = f(x) - f'(x) + f''(x)

\rm :\longmapsto\:g(x) =  {ax}^{2} + bx + c -   2ax - b + 2a

\rm :\longmapsto\:g(x) =  {ax}^{2} + (b - 2a)x + c - b + 2a

Now, g(x) is a quadratic expression with a > 0

So, Discriminant of g(x), which is evaluated as

\rm :\longmapsto\:D =  {(b - 2a)}^{2} - 4a(2a - b + c)

\rm \:  =  \:  {b}^{2} +  {4a}^{2} - \cancel{4ab} -  {8a}^{2} + \cancel{4ab} - 4ac

\rm \:  =  \:  {b}^{2} - {4a}^{2} - 4ac

\rm \:  =  \:  {b}^{2} - 4ac -  {4a}^{2}

\rm \:   \:  &lt; 0

[ \because \:  {b}^{2}  - 4ac &lt; 0 \:  \:  \: and \:  \:  \:  {4a}^{2} &gt; 0 \: ]

So, for g(x) we have

↝ coefficient of x², a > 0 and Discriminant, D < 0

\bf\implies \:g(x) &gt; 0

So, option (a) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Similar questions