Math, asked by chanmeetsinghsahni56, 9 months ago

Please solve the question in attachment ​

Attachments:

Answers

Answered by shadowsabers03
1

Here,

\longrightarrow\sf{A+B+C=\pi}

\longrightarrow\sf{B+C=\pi-A}

Taking tangent on both sides,

\longrightarrow\sf{\tan(B+C)=\tan(\pi-A)}

\longrightarrow\sf{\dfrac{\tan B+\tan C}{1-\tan B\tan C}=-\tan A}

\longrightarrow\sf{\tan B+\tan C=\tan A\tan B\tan C-\tan A}

\longrightarrow\sf{\tan A+\tan B+\tan C=\tan A\tan B\tan C\quad\quad\dots(1)}

On squaring both sides,

\longrightarrow\sf{(\tan A+\tan B+\tan C)^2=(\tan A\tan B\tan C)^2}

\displaystyle\longrightarrow\sf{\sum\tan^2A+2\sum\tan A\tan B=\tan^2A\tan^2B\tan^2C}

\displaystyle\longrightarrow\sf{\sum\tan^2A=\tan^2A\tan^2B\tan^2C-2\sum\tan A\tan B\quad\quad\dots(2)}

Thus,

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\sum\left(\dfrac{\tan^2A}{\tan A\tan B\tan C}\right)}

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\dfrac{\displaystyle\sum\tan^2A}{\tan A\tan B\tan C}}

From (2),

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\dfrac{\tan^2A\tan^2B\tan^2C-2\displaystyle\sum\tan A\tan B}{\tan A\tan B\tan C}}

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\tan A\tan B\tan C-\dfrac{2\displaystyle\sum\tan A\tan B}{\tan A\tan B\tan C}}

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\tan A\tan B\tan C-2\sum\dfrac{\tan A\tan B}{\tan A\tan B\tan C}}

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\tan A\tan B\tan C-2\sum\dfrac{1}{\tan A}}

From (1),

\displaystyle\longrightarrow\sf{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\tan A+\tan +B\tan C-2\sum\cot A}

Or,

\displaystyle\longrightarrow\sf{\underline{\underline{\sum\left(\dfrac{\tan A}{\tan B\tan C}\right)=\sum(\tan A)-2\sum(\cot A)}}}

Hence Proved!

Similar questions