Math, asked by Anonymous, 2 months ago

Please solve the question in attachment, no spam please , irrelevant answers will be reported​

Attachments:

Answers

Answered by Anonymous
54

\underline{\textbf{QUESTION :-}}

\textsf{If cosec \:0 + cot \:0 =p, then prove that cos \:0} = \frac{p^2 -1}{ p^2+1}

\underline{\textbf{SOLUTION :-}}

Given :cosec0+cot0=p

To Prove:cos0=\frac{p^2-1}{p^2+1}

Proof - Cosec0+cot0=p \to (i)

We know-cosec^20-cot^20=1

(cosec \:0+cot\:0)(cosec\:0+cot\:0)=1

cosec0-cot0=\frac{1}{p}\to (ii) \textsf{from i}

Add (i) & (ii)

cosec\:0+cot\:0+cosec\:0-cot\:0=p+\frac{1}{p}

2 \:cosec\:0=\frac{p^2+1}{p}\to(iii)

Subtract  (i) & (ii)

cosec\:0+cot\:0-cosec\:0+cot\:0=p-\frac{1}{p}

2\:cot\:0=\frac{p^2-1}{p}\to (iv)

Divide \frac{iv}{iii}

\frac{2\:cot\:0}{2\:cosec\:0}=\frac{p^2-1}{p^2+1}

\frac{cos\:o\times sin\:o}{sin\:o}=\frac{p^2-1}{p^2+1}

cos0=\frac{p^2-1}{p^2+1}

\boxed{cos\:0=\frac{p^2-1}{p^2+1}}

\therefore\: \mathcal{HENCE\:PROVED}

Attachments:
Answered by Seafairy
57

Given :

  • \displaystyle{\sf cosec\theta+cot\theta=p}

To Prove :

  • \displaystyle{\sf cos\theta = \dfrac{p^2-1}{p^2+1}}

Solution :

{\longrightarrow  \displaystyle{\sf cosec\theta+cot\theta=p}}

Substitute the value of p in the Equation.

{\longrightarrow\displaystyle{\sf \dfrac{p^2-1}{p^2+1}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{(cosec\theta+cot\theta)^2-1}{(cosec\theta+cot\theta)^2+1}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{cosec^2\theta+cot^2\theta+2cosec\theta\:cot\theta-1}{cosec^2\theta+cot^2\theta+2cosec\theta\:cot\theta+1}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{(cosec\theta^2-1)+cot\theta^2+2cosec\theta\:cot\theta}{(cot^2\theta+1)+cosec^2\theta+2cosec\theta\:cot\theta}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{cot^2\theta+cot^2\theta+2cosec\theta\:cot\theta}{cosec^2\theta+cosec^2\theta+2cosec\theta\:cot\theta}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{2cot^2\theta+2cosec\theta\:cot\theta}{2cosec^2\theta+2cosec\theta\:cot\theta}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{2cot\theta{\cancel{(cot\theta+cosec\theta)}}}{2cosec\theta{\cancel{(cosec\theta+\:cot\theta)}}}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{{\cancel{2}}cot\theta}{{\cancel{2}}cosec\theta}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{cot\theta}{cosec\theta}}}\\\\{\longrightarrow \displaystyle{\sf \dfrac{cos\theta}{{\cancel{sin\theta}}}\times \dfrac{{\cancel{sin\theta}}}{1}}}\\\\{\longrightarrow \displaystyle{\sf cos\theta }}\\\\{\sf {Hence\:Proved}}

Similar questions