Math, asked by guptaananya2005, 11 days ago

Please solve the question in attachment.

No spam please.

Need quality answer

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

 \sf \:  \sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } } \times  \sqrt{\dfrac{cosec\theta  - cot\theta }{cosec\theta  + cot\theta } }  = \dfrac{r - 1}{r + 1}

then

 \:  \:  \:  \: (1) \: tan \theta \:  =  \:  \sqrt{ {r}^{2}  - 1}

 \:  \:  \:  \: (2) \: cos \theta \:  =  \:  r

 \:  \:  \:  \: (3) \:sin \theta \:  +  cos \theta \:  =  \:   \dfrac{ \sqrt{1 +  {r}^{2} } }{r}

 \:  \:  \:  \: (4) \: cot \theta \:  =  \:  \sqrt{1 -  {r}^{2}}

 \green{\large\underline{\sf{Solution-}}}

Given Trigonometric equation

\rm :\longmapsto\:\sf \:\sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } } \times  \sqrt{\dfrac{cosec\theta  - cot\theta }{cosec\theta  + cot\theta } }  = \dfrac{r - 1}{r + 1}

\rm :\longmapsto\:\sf \:\sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } } \times   \sqrt{\dfrac{\dfrac{1}{sin\theta }  - \dfrac{cos\theta }{sin\theta } }{\dfrac{1}{sin\theta }  + \dfrac{cos\theta }{sin\theta } } }   = \dfrac{r - 1}{r + 1}

\rm :\longmapsto\:\sf \:\sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } } \times   \sqrt{\dfrac{\dfrac{1 - cos\theta }{sin\theta } }{\dfrac{1 + cos\theta }{sin\theta }} }   = \dfrac{r - 1}{r + 1}

\rm :\longmapsto\:\sf \:\sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } } \times\sqrt{\dfrac{1 - cos\theta }{1 + cos\theta } }  = \dfrac{r - 1}{r + 1}

\rm :\longmapsto\:\sf \:\dfrac{1 - cos\theta }{1 + cos\theta} = \dfrac{r - 1}{r + 1}

can be rewritten as

\rm :\longmapsto\:\sf \:\dfrac{1 +  cos\theta }{1  -  cos\theta} = \dfrac{r  +  1}{r  -  1}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\sf \:\dfrac{1 +  cos\theta  + 1 - cos\theta }{1 + cos\theta  - 1  + cos\theta} = \dfrac{r  +  1 + r - 1}{r + 1 - r   +  1}

\rm :\longmapsto\:\sf \:\dfrac{2 }{2cos\theta} = \dfrac{2r}{2}

\rm :\longmapsto\:\sf \:\dfrac{1}{cos\theta} = r

\rm \implies\:r = sec\theta

\rm \implies\: {r}^{2}  = sec^{2} \theta

\rm \implies\: {r}^{2}  = 1 + tan^{2} \theta

\rm \implies\: {r}^{2} - 1 =  tan^{2} \theta

\bf\implies \:tan\theta  =  \sqrt{ {r}^{2} - 1 }

So, Option (1) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions