Math, asked by arnav7867, 6 months ago

please solve the question in the image​

Attachments:

Answers

Answered by Rose08
18

Answer :-

\sf\huge \dfrac{y - 6}{4}  =  \dfrac{2y}{5}  -  \dfrac{7(y + 3)}{20}

\sf\longrightarrow  \dfrac{y - 6}{4}  =  \dfrac{2y}{5}  -  \dfrac{7y + 21}{20}

\sf\longrightarrow \dfrac{y - 6}{4}  = \dfrac{8y - (7y + 21)}{20}

\sf\longrightarrow \dfrac{y - 6}{4}  = \dfrac{8y - 7y - 21}{20}

\sf\longrightarrow \dfrac{y - 6}{4}  = \dfrac{y - 21}{20}

\boxed{\sf Cross \: multiplying \: the \: terms}

\sf\longrightarrow 20(y - 6) = 4(y - 21)

\sf\longrightarrow 20y - 120 = 4y - 84

\sf\longrightarrow 20y - 4y = - 84 + 120

\sf\longrightarrow 16y = 36

\sf\longrightarrow y = \dfrac{36}{16}

\boxed{\underline{\sf \therefore y = \dfrac{9}{4}}}

Answered by Anonymous
11

\sf{Answer}

Step by step explanation:-

\sf\dfrac{y-6}{4} = \sf\dfrac{2y}{5} - \sf\dfrac{7(y+3)}{20}

\sf\dfrac{y-6}{4} = \sf\dfrac{2y}{5} -\sf\dfrac{7y+21}{20}

\sf\dfrac{y-6}{4} = \sf\dfrac{8y-7(y+3)}{20}

\sf\dfrac{y-6}{4} = \sf\dfrac{8y-7y-21}{20}

\sf\dfrac{y-6}{4} =\sf\dfrac{y-21}{20}

\sf{y-6} = \sf\dfrac{y-21}{5}

\sf{Do\:cross\: multiplication}

\sf{5(y-6)} = \sf{y-21}

\sf{5y-30} = \sf{y-21}

\sf{Transpose\: like\:terms}

\sf{5y-y=30-21}

\sf{4y=9}

\sf\dfrac{9}{4} = \sf{y}

Hope u helpful

Thank u :)

Similar questions