Math, asked by pranaypawar4121, 1 year ago

please solve the question no.2

Attachments:

Answers

Answered by sivaprasath
1

Answer:

6

Step-by-step explanation:

Given :

To find the value of :

\sqrt{12 + 6\sqrt{3}} +\sqrt{12 - 6\sqrt{3}}

Solution :

We know that,

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

Hence,

By using them,

\sqrt{12 + 6\sqrt{3}} +\sqrt{12 - 6\sqrt{3}}

\sqrt{9 + 3 + 6\sqrt{3}} +\sqrt{9 + 3 - 6\sqrt{3}}

\sqrt{(3)^2 + (\sqrt{3})^2 + 2(3)(\sqrt{3})} +\sqrt{(3)^2 - (\sqrt{3})^2 + 2(3)(\sqrt{3})}

\sqrt{( 3 + \sqrt{3})^2} + \sqrt{( 3 - \sqrt{3})^2}= (3 + \sqrt{3}) + ( 3 - \sqrt{3}) = 6


pranaypawar4121: thanku bhaiyaa
pranaypawar4121: thanku bhaiyaa
sivaprasath: no problem,. hope you got my answer (understood something)
Similar questions