Math, asked by sahaalpana904, 10 months ago

Please solve the question
please

Attachments:

Answers

Answered by TheValkyrie
5

Question:

Find the value of x, if 5^{x-4} =(125)^{2x-1}

Answer:

\bigstar{The\:value\:of\:x\:is\:\frac{-1}{5} }

Explanation:

Given:

  • 5^{x-4} =125^{2x-1}

To Find:

  • The value of x

Solution:

5x^{x-4} =125^{2x-1}

→ Here 125 can be written as 5³

→ Hence

  5^{x-4} =5^{(3)^{2x-1} }

→ We know that a^{m^{n} } =a^{mn}

→ Therefore

   5^{x-4} =5^{6x-3}

→ Here bases are equal, hence exponents must be equal

   x-4=6x-3

   5x=\:-4+3

   x=\:\frac{-1}{5}

\boxed{Hence\:the\:value\:of\:x\:is\:\frac{-1}{5} }

Notes:

→ Some exponential laws

  • a^{m} \times a^{n} =a^{m+n}
  • \frac{a^{m} }{a^{n} }=a^{m-n}
  • a^{m^{n} } =a^{mn}
  • a^{-1} =\frac{1}{a}
  • a^{0} =1

   

Similar questions