Math, asked by misba01khan, 1 month ago

please solve the question please ​

Attachments:

Answers

Answered by ImperialGladiator
11

Answer:

k = 3

Explanation:

Given polynomial,

 \rm \implies \: f(x) = {x}^{2}  - 4x + k

 \rm \: Whose \: zeros \:  \alpha  \: and  \: \beta

We need to find the value of k

On comapring f(x) with the general form of a quadratic equation ax² + bx + c

We get,

  • a = 1
  • b = -4
  • c = k

Then,

 \rm \bullet \: sum \: of \: zeros = \alpha  +  \beta  =  \dfrac{ - b}{a}  =  \dfrac{ - ( - 4)}{1}  = 4

 \rm \bullet \: product \: of \: zeros = \alpha  \beta  =  \dfrac{c}{a}  =  \dfrac{k}{1}  = k

Given,

 \implies \:  \alpha  -  \beta  = 2

On squaring both sides,

 \rm \implies \:  {( \alpha  -  \beta )}^{2}  =  {(2)}^{2}

 \rm \implies \:   {( \alpha  +  \beta) }^{2} - 4 \alpha  \beta   =  4

Substituting the values,

 \rm \implies \:   {( 4) }^{2} - 4 k  =  4

 \rm \implies \: 16- 4 k  =  4

 \rm \implies \: 16- 4   =  4 k

 \rm \implies \: 12 =  4 k

 \rm \implies \:  \dfrac{12}{4}  =   k

 \rm \implies \:  3 =   k

The value of k’ is 3

______________________

Note:

\bullet \: {( \alpha  -  \beta )}^{2} = {( \alpha  +  \beta) }^{2} - 4 \alpha  \beta

Similar questions