Math, asked by rishabh1284, 1 year ago

please solve the question proved that

Attachments:

Answers

Answered by VijayaLaxmiMehra1
5
Hey!!





REFER TO THE ATTACHMENT ABOVE FOR YOUR SOLUTION





HOPE IT HELPS!!!!!
Attachments:
Answered by Anonymous
17

 \huge \boxed{ \mathbb{ \ulcorner ANSWER: \urcorner}}



 \huge \bf \sf{Prove \:  \:  that :-)}



  \huge =>  \frac{ \sin \theta}{1 +  \cos \theta}  =  \frac{1 -  \cos \theta}{ \sin \theta} .


 \huge  \bf\underline { \mathbb{S}olving  \:  \mathbb{LHS}.}
 \huge =  \frac{ \sin \theta}{1 +  \cos \theta} .


 \huge =  \frac{ \sin \theta}{1 +  \cos \theta}  \times  \frac{1 -  \cos \theta}{1 -  \cos \theta} .



 \huge =  \frac{ \sin \theta(1 -  \cos \theta)}{1 -  { \cos}^{2} \theta } .



 \huge = \frac{  \cancel{\sin \theta}(1 -  \cos \theta)}{ { \sin} \cancel{^{2}} \theta } .


[ => 1 - cos²x = sin²x ].



 \huge \boxed{ =  \frac{1 -  \cos \theta}{ \sin \theta} .}



 \huge \bf \underline{ \mathbb{LHS = RHS.}}



✔✔Hence, it is proved ✅✅.

____________________________________




 \huge \boxed{ \mathbb{THANKS}}




 \huge \bf{ \# \mathbb{B}e \mathbb{B}rainly.}
Similar questions