Please solve the question shown in the picture
Guys please solve it!!!!
मैंने यह सेक्ंद टाइम भेजा है।
क्या किसी को यह सोल्व करना नहीं आता ?
Answers
Answer:
tan x - sec x [ 3 rd quadrant ]
- ( sec x + tan x ) [ 2 nd quadrant ]
Step-by-step explanation:
π/2 < x < 3 π/2
This means that x is present in the 2 nd and the 3 rd quadrants .
ALL - SIN - TAN - COS rule
Sin is positive in 2 nd quadrant and negtive .
( 1 - sin x ) / cos x
= 1 / cos x - sin x / cos x
= sec x - tan x
Note that sec x is negative in both 2 nd and in 3 rd .
tan x is positive in 3 rd but negative in 2 nd .
Hence there will be 2 solutions given in ANSWERS .
ANSWER:------------
π/2 < x < 3 π/2
1−sinx1+sinx⟹1−sinx1+sinx×1−sinx
1−sinx⟹(1−sinx)21−sin2x⟹(1−sinx)2c
os2x
⟹1−sinxcosx\begin{lgathered}\sqrt{\frac{1-sinx}
{1+sinx}}\\\\\implies \sqrt{\frac{1-sinx}
{1+sinx}\times \frac{1-sinx}{1-sinx}}\\\\\implies \sqrt{\frac{
(1-sinx)^2}{1-sin^2x}}\\\\\implies \sqrt{\frac{(1-
sinx)^2}{cos^2x}}\\\\\implies \frac{1-
sinx}{cosx}\end{lgathered}1+sinx1−
sinx⟹1+sinx1−sinx×1−sinx1−sinx
⟹1−sin2x(1−sinx)2⟹cos2x(1−sinx)2⟹cosx1−sinx
hope it helps:-----
T!—!ANKS!!!