Math, asked by 12ahujagitansh, 7 hours ago

Please solve the question

y =  {e}^{ {x}^{ {e}^{ {x}^{ {e}^{x -  -  -  \infty } } } } }  \: find \:  \frac{dy}{dx}

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {e}^{ {x}^{ {{e}^{x}}^{{}^{} -  -  -  \infty } } }

can be rewritten as

\rm :\longmapsto\:y =  {e}^{ {x}^{y} }  -  -  - (1)

On taking log on both sides, we get

\rm :\longmapsto\:logy =  log{e}^{ {x}^{y} }

\rm :\longmapsto\:logy =   {x}^{y}loge

\rm :\longmapsto\:logy =   {x}^{y} -  -  - (2)

On taking log on both sides, we get

\rm :\longmapsto\:log(logy) = log {x}^{y}

\rm :\longmapsto\:log(logy) = ylogx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}log(logy) = \dfrac{d}{dx}ylogx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}uv =   \:u\dfrac{d}{dx}v + v\dfrac{d}{dx}u \:  }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}logy = y\dfrac{d}{dx}logx + logx\dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{1}{logy}\dfrac{dy}{dx} = y \times \dfrac{1}{x} + logx\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{1}{ylogy}\dfrac{dy}{dx} = \dfrac{y}{x} + logx\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{1}{ylogy}\dfrac{dy}{dx}  -  logx\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\bigg[\dfrac{1}{ylogy}  -  logx\bigg]\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\bigg[\dfrac{1 - y \: logy \: logx}{ylogy}\bigg]\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ {y}^{2} \: logy }{x(1 - y \: logy \: logx)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {e}^{ {x}^{ {{e}^{x}}^{{}^{} -  -  -  \infty } } }

can be rewritten as

\rm :\longmapsto\:y =  {e}^{ {x}^{y} }  -  -  - (1)

On taking log on both sides, we get

\rm :\longmapsto\:logy =  log{e}^{ {x}^{y} }

\rm :\longmapsto\:logy =   {x}^{y}loge

\rm :\longmapsto\:logy =   {x}^{y} -  -  - (2)

On taking log on both sides, we get

\rm :\longmapsto\:log(logy) = log {x}^{y}

\rm :\longmapsto\:log(logy) = ylogx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}log(logy) = \dfrac{d}{dx}ylogx

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}}

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}uv =   \:u\dfrac{d}{dx}v + v\dfrac{d}{dx}u \:  }}}

So, using this, we get

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}logy = y\dfrac{d}{dx}logx + logx\dfrac{d}{dx}y

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{1}{logy}\dfrac{dy}{dx} = y \times \dfrac{1}{x} + logx\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{1}{ylogy}\dfrac{dy}{dx} = \dfrac{y}{x} + logx\dfrac{dy}{dx}

\rm :\longmapsto\:\dfrac{1}{ylogy}\dfrac{dy}{dx}  -  logx\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\bigg[\dfrac{1}{ylogy}  -  logx\bigg]\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\bigg[\dfrac{1 - y \: logy \: logx}{ylogy}\bigg]\dfrac{dy}{dx} = \dfrac{y}{x}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ {y}^{2} \: logy }{x(1 - y \: logy \: logx)}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions